References
- Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T. Q. & Hui, D. (2018). Additive manufacturing (3D .printing): A review of materials, methods, applications and challenges. Comp. Part B: Engin., 143, 172–196. DOI: 10.1016/j.compositesb.2018.02.012.
- Upadhyay, M., Sivarupan, T. & El Mansori, M. (2017) 3D printing for rapid sand casting—A review. J. Manufac. Proc. 29, 211–220. DOI: 10.1016/j.jmapro.2017.07.017.
- Walker, J., Harris, E., Lynagh, C., Beck, A., Lonardo, R., Vuksanovich, B., Thiel, J., Rogers, K., Conner, B. & MacDonald, E. (2018) 3D Printed Smart Molds for Sand Casting. Internat. J. Metalc., 12(4), 785–796. DOI: 10.1007/s40962-018-0211-x.
- C. Hull., M. Feygin., Y. Baron., R. Sanders., E. Sachs., A.Lightman. & T. Wohlers. (1995). Rapid prototyping:current technology and. Rapid Prototyp. J., 1, 11–19.
- Wang, J., Sama, S.R. & Manogharan, G. (2018). Re-Thinking Design Methodology for Castings: 3D Sand-Printing and Topology Optimization. Internat. J. Metalc., 13(1), 2–17. DOI: 10.1007/s40962-018-0229-0.
- Ying-Min, L., Tian-Shu, W. & Wei-Hua, L. (2018). Research on regeneration methods of animal glue waste sand for foundry. R Soc. Open Sci., 5(5), 172270. DOI: 10.1098/rsos.172270.
- Andrade, R.M., Cava, S., Silva, S.N., Soledade, L.E.B., Rossi, C.C., Roberto Leite, E., Paskocimas, C.A., Varela, J.A. & Longo, E. (2005). Foundry sand recycling in the troughs of blast furnaces: a technical note. J. Mat. Proces. Technol., 159(1), 125–134. DOI: 10.1016/j.jmatprotec.2003.10.021.
- Khan, M.M., Singh, M., Mahajani, S.M., Jadhav, G.N. & Mandre, S. (2018). Reclamation of used green sand in small scale foundries. J. Mat. Proces. Technol., 255, 559–569. DOI: 10.1016/j.jmatprotec.2018.01.005.
- Lucarz, M. (2015). Setting temperature for thermal reclamation of used moulding sands on the basis of thermal analysis. METALURGIJA 54(2), 319–322.
- Lucarz, M. (2015). Thermal reclamation of the used moulding sands. METALURGIJA 54(1), 109–112.
- Łucarz, M., Grabowska, B. & Grabowski, G. (2014). Determination of Parameters of the Moulding Sand Reclamation Process, on the Thermal Analysis Bases. Arch. Metal. Mat., 59(3), 1023–1027. DOI: 10.2478/amm-2014-0171.
- Łucarz, M. (2013). The Influence of The Configuration of Operating Parameters of a Machine for Thermal Reclamation on the Efficiency of Reclamation Process. Arch. Metal. Mater., 58(3), 923–926. DOI: 10.2478/amm-2013-0102.
- Lanza, A., Islam, M.A. & de Lasa, H. (2016). CPFD modeling and experimental validation of gas–solid flow in a down flow reactor. Comp. & Chem. Engin., 90, 79–93. DOI: 10.1016/j.compchemeng.2016.04.007.
- Chen, C., Werther, J., Heinrich, S., Qi, H.-Y. & Hartge, E.-U. (2013).CPFD simulation of circulating fluidized bed risers. Powder Technol., 235, 238–247. DOI: 10.1016/j. powtec.2012.10.014.
- Snider, D.M., O’Rourke, P.J. & Andrews, M.J. Sediment flow in inclined vessels calculated using a multiphase particle-in-cell model for dense particle flows. Internat. J. Multiphase Flow., 24,(8), 1359–1382.
- Snider, D.M. (2001). An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows. J. Comput. Physics., 170(2), 523–549. DOI: 10.1006/jcph.2001.6747.
- Abbasi, A., Ege, P.E. & de Lasa, H.I. (2011). CPFD simulation of a fast fluidized bed steam coal gasifier feeding section. Chem. Engin. J., 174(1), 341–350. DOI: 10.1016/j. cej.2011.07.085.
- Lan, X., Shi, X., Zhang, Y., Wang, Y., Xu, C. & Gao, J. (2013). Solids Back-mixing Behavior and Effect of the Mesoscale Structure in CFB Risers. Ind. & Engin. Chem. Res., 52(34), 11888–11896. DOI: 10.1021/ie3034448.
- Snider, D.M. (2007). Three fundamental granular flow experiments and CPFD predictions. Powder Technol., 176(1), 36–46. DOI: 10.1016/j.powtec.2007.01.032.
- Zhao, P., O’Rourke, P.J. & Snider, D. (2009). Three-dimensional simulation of liquid injection, film formation and transport, in fluidized beds. Particuology 7(5), 337–346. DOI: 10.1016/j.partic.2009.07.002.
- Snider, D. & Banerjee, S. (2010). Heterogeneous gas chemistry in the CPFD Eulerian–Lagrangian numerical scheme (ozone decomposition). Powder Technol., 199(1), 100–106. DOI: 10.1016/j.powtec.2009.04.023.
- Karimipour, S. & Pugsley, T. (2012). Application of the particle in cell approach for the simulation of bubbling fluidized beds of Geldart A particles. Powder Technol., 220, 63–69. DOI: 10.1016/j.powtec.2011.09.026.
- Nakhaei, M., Hessel, C.E., Wu, H., Grévain, D., Zakrzewski, S., Jensen, L.S., Glarborg, P. & Dam-Johansen, K. (2018). Experimental and CPFD study of gas–solid flow in a cold pilot calciner. Powder Technol., 340, 99–115. DOI: 10.1016/j. powtec.2018.09.008.
- Liu, H., Li, J. & Wang, Q. (2017). Simulation of gas–solid flow characteristics in a circulating fluidized bed based on a computational particle fluid dynamics model. Powder Technol., 321, 132–142. DOI: 10.1016/j.powtec.2017.07.040.
- Shi, X., Wu, Y., Lan, X., Liu, F. & Gao, J. (2015). Effects of the riser exit geometries on the hydrodynamics and solids back-mixing in CFB risers: 3D simulation using CPFD approach. Powder Technol., 284, 130–142. DOI: 10.1016/j. powtec.2015.06.049.
- Wang, Q., Niemi, T., Peltola, J., Kallio, S., Yang, H., Lu, J. & Wei, L. (2015). Particle size distribution in CPFD modeling of gas–solid flows in a CFB riser. Particuology 21, 107–117. DOI: 10.1016/j.partic.2014.06.009.
- Benyahia, S., Syamlal, M. & O’Brien, T.J. (2005). Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe. Powder Technol., 156(2-3), 62–72. DOI: 10.1016/j.powtec.2005.04.002.
- Almuttahar, A. & Taghipour, F. (2008). Computational fluid dynamics of high density circulating fluidized bed riser: Study of modeling parameters. Powder Technol., 185(1), 11–23. DOI: 10.1016/j.powtec.2007.09.010.
- Li, T., Dietiker, J.F. & Shadle, L. (2014). Comparison of full-loop and riser-only simulations for a pilot-scale circulating fluidized bed riser. Chem. Engin. Sci., 120, 10–21. DOI: 10.1016/j.ces.2014.08.041.
- Harris, S.E. & Crighton, D.G. (1994). Solitons, solitary waves, and voidage disturbances in gas-fluidized beds J. Fluid Mech., 266, 243–276.
- Shi, X., Sun, R., Lan, X., Liu, F., Zhang, Y. & Gao, J. (2015). CPFD simulation of solids residence time and back-mixing in CFB risers. Powder Technol., 271, 16–25. DOI: 10.1016/j.powtec.2014.11.011.