Have a personal or library account? Click to login
Numerical simulation and improvement of combustor structure in 3D printed sand recycling system Cover

Numerical simulation and improvement of combustor structure in 3D printed sand recycling system

By: Xiao Gao,  Mao Lei and  Weiwei Xu  
Open Access
|Jan 2024

References

  1. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T. Q. & Hui, D. (2018). Additive manufacturing (3D .printing): A review of materials, methods, applications and challenges. Comp. Part B: Engin., 143, 172–196. DOI: 10.1016/j.compositesb.2018.02.012.
  2. Upadhyay, M., Sivarupan, T. & El Mansori, M. (2017) 3D printing for rapid sand casting—A review. J. Manufac. Proc. 29, 211–220. DOI: 10.1016/j.jmapro.2017.07.017.
  3. Walker, J., Harris, E., Lynagh, C., Beck, A., Lonardo, R., Vuksanovich, B., Thiel, J., Rogers, K., Conner, B. & MacDonald, E. (2018) 3D Printed Smart Molds for Sand Casting. Internat. J. Metalc., 12(4), 785–796. DOI: 10.1007/s40962-018-0211-x.
  4. C. Hull., M. Feygin., Y. Baron., R. Sanders., E. Sachs., A.Lightman. & T. Wohlers. (1995). Rapid prototyping:current technology and. Rapid Prototyp. J., 1, 11–19.
  5. Wang, J., Sama, S.R. & Manogharan, G. (2018). Re-Thinking Design Methodology for Castings: 3D Sand-Printing and Topology Optimization. Internat. J. Metalc., 13(1), 2–17. DOI: 10.1007/s40962-018-0229-0.
  6. Ying-Min, L., Tian-Shu, W. & Wei-Hua, L. (2018). Research on regeneration methods of animal glue waste sand for foundry. R Soc. Open Sci., 5(5), 172270. DOI: 10.1098/rsos.172270.
  7. Andrade, R.M., Cava, S., Silva, S.N., Soledade, L.E.B., Rossi, C.C., Roberto Leite, E., Paskocimas, C.A., Varela, J.A. & Longo, E. (2005). Foundry sand recycling in the troughs of blast furnaces: a technical note. J. Mat. Proces. Technol., 159(1), 125–134. DOI: 10.1016/j.jmatprotec.2003.10.021.
  8. Khan, M.M., Singh, M., Mahajani, S.M., Jadhav, G.N. & Mandre, S. (2018). Reclamation of used green sand in small scale foundries. J. Mat. Proces. Technol., 255, 559–569. DOI: 10.1016/j.jmatprotec.2018.01.005.
  9. Lucarz, M. (2015). Setting temperature for thermal reclamation of used moulding sands on the basis of thermal analysis. METALURGIJA 54(2), 319–322.
  10. Lucarz, M. (2015). Thermal reclamation of the used moulding sands. METALURGIJA 54(1), 109–112.
  11. Łucarz, M., Grabowska, B. & Grabowski, G. (2014). Determination of Parameters of the Moulding Sand Reclamation Process, on the Thermal Analysis Bases. Arch. Metal. Mat., 59(3), 1023–1027. DOI: 10.2478/amm-2014-0171.
  12. Łucarz, M. (2013). The Influence of The Configuration of Operating Parameters of a Machine for Thermal Reclamation on the Efficiency of Reclamation Process. Arch. Metal. Mater., 58(3), 923–926. DOI: 10.2478/amm-2013-0102.
  13. Lanza, A., Islam, M.A. & de Lasa, H. (2016). CPFD modeling and experimental validation of gas–solid flow in a down flow reactor. Comp. & Chem. Engin., 90, 79–93. DOI: 10.1016/j.compchemeng.2016.04.007.
  14. Chen, C., Werther, J., Heinrich, S., Qi, H.-Y. & Hartge, E.-U. (2013).CPFD simulation of circulating fluidized bed risers. Powder Technol., 235, 238–247. DOI: 10.1016/j. powtec.2012.10.014.
  15. Snider, D.M., O’Rourke, P.J. & Andrews, M.J. Sediment flow in inclined vessels calculated using a multiphase particle-in-cell model for dense particle flows. Internat. J. Multiphase Flow., 24,(8), 1359–1382.
  16. Snider, D.M. (2001). An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows. J. Comput. Physics., 170(2), 523–549. DOI: 10.1006/jcph.2001.6747.
  17. Abbasi, A., Ege, P.E. & de Lasa, H.I. (2011). CPFD simulation of a fast fluidized bed steam coal gasifier feeding section. Chem. Engin. J., 174(1), 341–350. DOI: 10.1016/j. cej.2011.07.085.
  18. Lan, X., Shi, X., Zhang, Y., Wang, Y., Xu, C. & Gao, J. (2013). Solids Back-mixing Behavior and Effect of the Mesoscale Structure in CFB Risers. Ind. & Engin. Chem. Res., 52(34), 11888–11896. DOI: 10.1021/ie3034448.
  19. Snider, D.M. (2007). Three fundamental granular flow experiments and CPFD predictions. Powder Technol., 176(1), 36–46. DOI: 10.1016/j.powtec.2007.01.032.
  20. Zhao, P., O’Rourke, P.J. & Snider, D. (2009). Three-dimensional simulation of liquid injection, film formation and transport, in fluidized beds. Particuology 7(5), 337–346. DOI: 10.1016/j.partic.2009.07.002.
  21. Snider, D. & Banerjee, S. (2010). Heterogeneous gas chemistry in the CPFD Eulerian–Lagrangian numerical scheme (ozone decomposition). Powder Technol., 199(1), 100–106. DOI: 10.1016/j.powtec.2009.04.023.
  22. Karimipour, S. & Pugsley, T. (2012). Application of the particle in cell approach for the simulation of bubbling fluidized beds of Geldart A particles. Powder Technol., 220, 63–69. DOI: 10.1016/j.powtec.2011.09.026.
  23. Nakhaei, M., Hessel, C.E., Wu, H., Grévain, D., Zakrzewski, S., Jensen, L.S., Glarborg, P. & Dam-Johansen, K. (2018). Experimental and CPFD study of gas–solid flow in a cold pilot calciner. Powder Technol., 340, 99–115. DOI: 10.1016/j. powtec.2018.09.008.
  24. Liu, H., Li, J. & Wang, Q. (2017). Simulation of gas–solid flow characteristics in a circulating fluidized bed based on a computational particle fluid dynamics model. Powder Technol., 321, 132–142. DOI: 10.1016/j.powtec.2017.07.040.
  25. Shi, X., Wu, Y., Lan, X., Liu, F. & Gao, J. (2015). Effects of the riser exit geometries on the hydrodynamics and solids back-mixing in CFB risers: 3D simulation using CPFD approach. Powder Technol., 284, 130–142. DOI: 10.1016/j. powtec.2015.06.049.
  26. Wang, Q., Niemi, T., Peltola, J., Kallio, S., Yang, H., Lu, J. & Wei, L. (2015). Particle size distribution in CPFD modeling of gas–solid flows in a CFB riser. Particuology 21, 107–117. DOI: 10.1016/j.partic.2014.06.009.
  27. Benyahia, S., Syamlal, M. & O’Brien, T.J. (2005). Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe. Powder Technol., 156(2-3), 62–72. DOI: 10.1016/j.powtec.2005.04.002.
  28. Almuttahar, A. & Taghipour, F. (2008). Computational fluid dynamics of high density circulating fluidized bed riser: Study of modeling parameters. Powder Technol., 185(1), 11–23. DOI: 10.1016/j.powtec.2007.09.010.
  29. Li, T., Dietiker, J.F. & Shadle, L. (2014). Comparison of full-loop and riser-only simulations for a pilot-scale circulating fluidized bed riser. Chem. Engin. Sci., 120, 10–21. DOI: 10.1016/j.ces.2014.08.041.
  30. Harris, S.E. & Crighton, D.G. (1994). Solitons, solitary waves, and voidage disturbances in gas-fluidized beds J. Fluid Mech., 266, 243–276.
  31. Shi, X., Sun, R., Lan, X., Liu, F., Zhang, Y. & Gao, J. (2015). CPFD simulation of solids residence time and back-mixing in CFB risers. Powder Technol., 271, 16–25. DOI: 10.1016/j.powtec.2014.11.011.
Language: English
Page range: 19 - 27
Published on: Jan 11, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Xiao Gao, Mao Lei, Weiwei Xu, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.