Have a personal or library account? Click to login
Experimental research on the removal characteristics of simulated radioactive aerosols by a cloud-type radioactive aerosol elimination system Cover

Experimental research on the removal characteristics of simulated radioactive aerosols by a cloud-type radioactive aerosol elimination system

Open Access
|Jan 2024

References

  1. Pan g, C.X., You, H.H., Liang, L.L., Lin, X.Y., Zhang, Y.P., Zhang, H., Pan, X.H., Hu, Y., Chen, Y., Luo, X.G. & Wang, H.J. (2023). Bamboo pulp-based electret fiber aerogel with enhanced electret performance by P-phenylenediamine modification for simulated radioactive aerosol purification in confined spaces. Colloids Surf. A Physicochem. Eng. Asp., 658, 130502. DOI: 10.1016/j.colsurfa.2022.130502.
  2. Xue, Y., Chen, J., Liu, P., Gao, J.Z., Gui, Y.Y., Cheng, W.T., Mu, F.Q. & Yan, Y.D. (2022). An efficient and high-capacity porous functionalized-membranes for uranium recovery from wastewater. Colloids Surf. A Physicochem. Eng. Asp., 647. DOI: 10.1016/J.COLSURFA.2022.129032.
  3. Dong, X.A., Cw, A., Wei, D.A. & Hwa, B. (2020). Modelling dispersion of radioactive aerosols and occupational dose assessment of workers in a large nuclear plant industrial workshop with a stratified air conditioning system-sciencedirect. Environ. Technol. Innov., 19. DOI: 10.1016/j.eti.2020.100828.
  4. Lin, L., Chen, H., Lin, L. & Xu, Q. (2009). The literature review of radioactive aerosol purification. Ind. Saf. Environ. Prot., 35, 1–3.
  5. Lee, M.H., Yang, W., Chae, N. & Choi, S. (2019). Performance assessment of hepa filter against radioactive aerosols from metal cutting during nuclear decommissioning. Nucl. Eng. Technol., 52(5). DOI: 10.1016/j.net.2019.10.017.
  6. El- Hussein, A. (2005). A study on natural radiation exposure in different realistic living rooms, J. Environ. Radioact., 79, 355–367. DOI: 10.1016/j. jenvrad.2004.08.009.
  7. Tripathi S.N. & Harrision R.G. (2001). Scavenging of electrifiedradioactive aerosol. Atmos. Environ., 35(33), 5817–5821. DOI: 10.1016/s1352-2310(01)00299-0.
  8. Ren, H.Y., Li, J., Yu, F. & Liang, S.L. (2020). Current situation and prospect of radioactive aerosol removal technology. Environ. Sci. Manag., 45, 92–96. DOI: 10.3969/j. issn.1673–1212.2020.10.020.
  9. Yang, T., Liu, Y. & Xing, P. (2003). Study on filtration efficiency of glass fiber filter for aerosols. Radiat. Prot., 23, 49–54. DOI: 10.3321/j.issn:1000-8187.2003.01.009.
  10. Wang, T., Wang, S. & Gao, Y. (2021). Emergency control and elinination of radioactive aerosol diffusion in environmental pollution accidents. Nucl. Saf. 20, 17–24. DOI: 10.16432/j. cnki.1672-5360.2021.03.004.
  11. Wang, L.J., Xu, X.C., Niu, X.H. & Pan, J.M. (2021). Colorimetric detection and membrane removal of arsenate by a multifunctional L-arginine modified FeOOH. Sep. Purif. Technol., 258, 118021. DOI: 10.1016/j.seppur.2020.118021.
  12. Ding, S.J., Lu, J.W., Ding, Z.C., Li, N., Fu, F.L. & Tang, B. (2016). Cr (VI) removal by mesoporous FeOOH polymorphs: performance and mechanism. RSC Adv., 6(84). DOI: 10.1039/c6ra14522a.
  13. U.S . (2002). Department of Energy. Innovative technology summary report: fog and strip decontamination technology for use in D&D environments. LANL Release Number: LAUR-03-1558.
  14. Berger, C., Song, Z.M., Li, T.B. & Ogbazghi, A.Y. (2004). Ultrathin Epitaxial Graphite: 2D Electron Gas roperties and a Route toward Graphene-based Nanoelectronics. J. Phys. Chem., 108(52), 19912–19916. DOI: 10.1021/jp040650f.
  15. Nair, R.R., Blake, P. & Grigorenko, A.N. (2008). Fine Structure Constant Denes Visual Transparency of Graphene. Sci., 320, 1308. DOI: 10.1126/science.1156965.
  16. Ren, J., Cao, T., Yang, X. & Tao, L. (2020). Ultrafiltration treatment of wastewater contained heavy metals complexed with palygorskite. Pol. J. Chem. Technol., 22(4), 1–9. DOI: 10.2478/pjct-2020-0031.
  17. Abdeldaiem, M., Sánchez-Polo, M., Rashed, A., Kamal, N. & Said, N. (2019). Adsorption mechanism and modelling of hydrocarbon contaminants onto rice straw activated carbons. Pol. J. Chem. Technol., 21(4), 1–12. DOI: 10.2478/pjct-2019-0032.
  18. Wang, B., Li, S.Q., Dong, S.J., Xin, R.B., Jin, R.Z., Zhang, Y.M., Dong, K.J. & Jiang, Y.C. (2018). A New Fine Particle Removal Technology: Cloud-Air-Purifying. Ind. Eng. Chem. Res., 57(34), 11815–11825. DOI: 10.1021/acs.iecr.8b03034.
  19. Hummers, W.S. & Offeman, R.E., (1958). Preparation of graphitic oxide. J. Am. Chem. Soc., 80, 1339.
  20. Su, J., Jia, Y., Shi, M.L., Shen, K.K., & Zhang, J.Q. (2022). Highly efficient unsymmetrical dimethylhydrazine removal from wastewater using MIL-53(Al)-derived carbons: Adsorption performance and mechanisms exploration. J. Environ. Chem. Eng., 10(6), 108975. DOI: 10.1016/j.jece.2022.108975.
  21. Zou, Z.G., Yu, H.J., Long, F. & Fan, Y.H. (2011). Preparation of Graphene Oxide by Ultrasound-Assisted Hummers Method. Chin. J. Inorg. Chem., 27(09):1753–1757.
  22. Zhou, Q., Lin, Y.X., Shu, J., Zhang, K.Y., Yu, Z.Z. & Tang, D.P. (2017). Reduced graphene oxide-functionalized FeOOH for signal-on photoelectrochemical sensing of prostate-specific antigen with bioresponsive controlled release system. Biosens. and Bioelectron., 98, 15–21. DOI: 10.1016/j. bios.2017.06.033.
  23. Kirpalani, D.M. & Suzuki, K. (2011). Ethanol enrichment from ethanol-water mixtures using high frequency ultrasonic atomization. Ultrason. Sonochem., 18(5), 1012–1017. DOI: 10.1016/j.ultsonch.2010.05.013.
  24. Trinh, V., Van, H., Pham, Q., Trinh, M. & Bui, H. (2020). Treatment of medical solid waste using an Air Flow controlled incinerator. Pol. J. Chem. Technol., 22(1) 29–34. DOI: 10.2478/pjct-2020-0005.
  25. Zhou, Y., Bao, Q.L., Tang, L.A.L., Zhong, Y.L. & Loh, K.P. (2009). Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chem. of Mater., 21(13), 2950–2956. DOI: 10.1021/cm9006603.
  26. Qiu, J.X., Zhang, P., Ling, M., Li, S., Liu, P.R., Zhao, H.J. & Zhang, S.Q. (2012). Photocatalytic Synthesis of TiO2 and Reduced Graphene Oxide Nanocomposite for Lithium Ion Battery. ACS Appl. Mater. Interface., DOI: 10.1021/am300722d.
  27. Han, Y., & Lu, Y. (2009). Characterization and electrical properties of conductive polymer/colloidal graphite oxide nanocomposites. Compos. Sci. Technol., 69(7–8), 1231–1237. DOI: 10.1016/j.compscitech.2009.02.028.
  28. Yang, Z., Liu, X., Liu, X., Wu, J. & Yu, Z. (2021). Preparation of β-cyclodextrin/graphene oxide and its adsorption properties for methylene blue. Colloids Surf., B, 111605. DOI: 10.1016/j.colsurfb.2021.111605.
  29. Lei, C., Wen, F., Chen, J., Chen, W. & Wang, B. (2021). Mussel-inspired synthesis of magnetic carboxymethyl chitosan aerogel for removal cationic and anionic dyes from aqueous solution. Polym., 213(26), 123316. DOI: 10.1016/j. polymer.2020.123316.
  30. Travlou, N.A., Kyzas, G.Z., Lazaridis, N.K., & Deliyanni, E.A. (2013). Functionalization of Graphite Oxide with Magnetic Chitosan for the Preparation of a Nanocomposite Dye Adsorbent. Langmuir, 29(5), 1657–1668. DOI: 10.1021/la304696y.
  31. Geng, F.X., Zhao, Z.G., Geng, J.X., Cong, H.T. & Cheng H.M. (2007). A simple and low-temperature hydrothermal route for the synthesis of tubular α-FeOOH. Mater. Lett., 61(26), 4794–4796. DOI: 10.1016/j.matlet.2007.03.036.
  32. Zhang, J.Q., Jia, Y. & Lv, X.M. 2023. View of the use of Cloud-Air-Purifying in radioactive aerosol purification. Appl. Chem. Ind. 01, 223–226+232. DOI: 10.16581/j.cnki.issn1671-3206.20221214.003.
  33. Pramod, K., Paul, A.B. & Klaus, W. 2020. Aerosol Measurement: Principles, Techniques and Applications. Beijing: Chemical Industry Press.
  34. Striolo, A. (2019). Studying surfactants adsorption on heterogeneous substrates. Curr. Opin. Chem. Eng. 23, 115–122. DOI: 10.1016/j.coche.2019.03.009.
  35. Xu, J. C., Zhang, J. & Yu, Y. (2016). Characteristics of vapor condensation on coal-fired fine particles. Energy & Fuels. 30(3), 1822–1828. DOI: 10.1021/acs. energyfuels. 5b02200.
  36. Bao, J.J., Yang, L.J. & Guo, W.W. (2012). Improving the removal of fine particles in the WFGD system by adding wetting agent. Energy & Fuels. 26(8), 4924–4931. DOI: 10.1021/ef3007195.
  37. Mason, B.J. (1978). Cloud physics. Beijing: Science Press.
Language: English
Page range: 10 - 18
Published on: Jan 11, 2024
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Jiqing Zhang, Ying Jia, Xiaomeng Lv, Tiedan Xiong, Yuanzheng Huang, Keke Shen, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.