References
- Samsonov, G.V. (1968). Mechanical Properties of the Elements, Handbook of the physicochemical properties of the elements. New York, USA (pp. 387–446).
- Brian, K. (2002). Francium to Polonium: Atlantic Europe Publishing Company 40.
- Standard Atomic Weights: Niobium: CIAAW (2017).
- Peiniger, M. & Piel, H. (1985). A Superconducting Nb3Sn Coated Multicell Accelerating Cavity. IEEE Trans. Nucl. Sci. 32(5), 3610–3612. DOI: 10.1109/TNS.1985.4334443.
- Moura, H.R.S. & De Moura, L. (2007). Melting and purification of niobium. Proceedings of the International Niobium Workshop; Ganapati Rao Myneni, Tadeu Carneiro and Andrew Hutton. AIP Conference Proceedings 927, 30 October – 1 November 2006 (pp. 165–178). Araxa, Brazil. DOI: 10.1063/1.2770689.
- Nowak, I. & Ziolek, M. (1999). Niobium Compounds: Preparation, Characterization and Application in Heterogeneous Catalysis. Chem. Rev. 99, 3603–3624. DOI: 10.1021/cr9800208.
- Jahnke, L.P., Frank, R.G. & Redden, T.K. (1960). Columbium Alloys Today. Metal. Progr. 77, 69–74. URL: http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=4183692.
- Nikulina, A.V. (2003). Zirconium-Niobium Alloys for Core Elements of Pressurized Water Reactors. Met. Sci. Heat Treat. 45, 287–292. DOI: 10.1023/A:1027388503837.
- Behera, A. (2022). Advanced Semiconductor/Conductor Materials. Adv. Mat. Springer, Cham. (pp. 557–596). DOI: 10.1007/978-3-030-80359-9_16.
- Vilaplana, J., Romaguera, C., Grimalt, F. & Cornellana, F. (1990). New trends in the use of metals in jewellery. Contact Derm. 25, 145–148. DOI: 10.1111/j.1600-0536.1991.tb01819.x.
- Vilaplana, J. & Romaguera, C. (1998). New developments in jewellery and dental materials. Contact Derm. 39, 55–57. DOI: 10.1111/j.1600-0536.1998.tb05832.x.
- Helaluddin, A.B.M., Khalid, R.S., Alaama, M. & Abbas, S.A. (2016). Main Analytical Techniques Used for Elemental Analysis inVarious Matrices. Trop. J. Pharm. Res. 15, 427–434. DOI: 10.4314/tjpr.v15i2.29.
- Dong, H.M. & Krivan, V. (2001). Direct solid-sampling electrothermal atomic absorption spectrometry methods for the determination of silicon in oxides of niobium, titanium and zirconium. Spectrochim. Acta. Part B. 56, 1645–1656. DOI: 10.1016/S0584-8547(01)00255-5.
- Lu, X.M. & Jin, D.L. (2009). Determination of niobium, silicon and phosphorus in ferrocolumbium by X-ray fluorescence spectrometry using sample preparation technique of centrifugal casting. Met. Anal. 29, 16–19.
- Petrova,, K.V., Baranovskaya V.B. & Korotkova, N.A. (2022). Direct inductively coupled plasma optical emission spectrometry for analysis of waste samarium-cobalt magnets. Arab. J. Chem. 15,103501. DOI: 10.1016/j.arabjc.2021.103501.
- Faix, W.G., Caletka, R. & Krivan, V. (1981). Radio-chemical multielement neutron activation analysis of high-purity niobium with short-lived indicator radionuclides. Anal. Chem. 53, 1594–1598. URL: https://eurekamag.com/research/087/033/087033214.php
- Ruiz, M.D.C., Rodriguez, M.H., Perino, E. & Olsina, R.A. (2002). Determination of Nb, Ta, Fe and Mn by X-ray fluorescence. Miner. Engg. 15, 373–375. DOI: 10.1016/S0892-6875(02)00039-0.
- Yi, W.J., Li, Y., Ran, G., Luo, H.Q. & Li, N.B. (2012). Determination of cadmium (II) by square wave anodic stripping voltammetry using bismuth–antimony film electrode. Sens. Actua. B: Chem. 166–167, 544–548. DOI: 10.1016/j.snb.2012.03.005.
- Hamed, M.M., Aglan, R.F. & El-Reefy, S.A. (2015). Normal and second derivative spectrophotometric determination of niobium using solid phase extraction technique. J Anal. Chem. 70, 1103–1110. DOI: 10.1134/S1061934815090075.
- Verdizade, N.A., Zalov, A.Z. & Suleymanova, G.S. (2017). Extraction-spectrophotometric determination of niobium and tantalum. Azerb. Khim Zh. 1, 72–76. URL: https://akj.az/uploads/journal/az/Verdizade.pdf
- Kutyrev, I.M., Nechepurenko, G.N. & Gaidukova, Yu. A. (2014). Extraction-spectrophotometric determination of niobium in magnetic alloys. Inorg. Mater. 50, 1405–1407. DOI: 10.1134/S0020168514140088.
- Agnihotri, N. & Agnihotri, R. (2012). Extractive spectrophotometric determination of niobium (V) using 3-hydroxy-2-(4’-methoxyphenyl)-4-oxo-4H-1-benzopyran as a complexing agent. Open Anal. Chem. J. 6, 39–44. DOI: 10.2174/1874065001206010039.
- Tarafder, P.K., Mondal, R.K. & Chattopadhaya, S. (2009). Extraction and sensitive spectrophotometric determination of niobium in silicate rocks and columbite-tantalite minerals. Chem. Anal. Warsaw. 54, 231–246.
- Agnihotri, N., Kamal, R. & Mehta, J.R. (2006). A highly selective spectrophotometric determination of niobium (V) using 3-hydroxy-2-[1’-phenyl-3’-(p-chlorophenyl)-4’-pyrazolyl]-4-oxo-4H-1-benzopyran as a complexing agent. Ann. Chim. (Rome, Italy). 96, 479–485. DOI: 10.1002/adic.200690048.
- Agnihotri, N. & Mehta, J.R. (2003). A highly selective spectrophotometric determination of niobium(V) using 6-chlo-ro-2-(2’-furyl)-3-hydroxy-4-oxo-4H-1-benzopyran as a complexing agent and chloroform as an extractant. J. Indian Chem. Soc. 80, 837–840.
- Uddin, M.A., Sutonu, B.H., Rub, M.A., Mahbub, S., Alotaibi, M.M., Asiri, A.M. & Kabir, M. (2022). UV-Visible spectroscopic and DFT studies of the binding of ciprofloxacin hydrochloride antibiotic drug with metal ions at numerous temperatures. Korean J. Chem. Eng. 39, 664–673. DOI: 10.1007/s11814-021-0924-z.
- Eroshin, A.V., Otlyotov, A.A., Kuzmin, I.A., Stuzhin, P.A. & Zhabanov, Y.A. (2022). DFT Study of the Molecular and Electronic Structure of Metal-Free Tetrabenzoporphyrin and Its Metal Complexes with Zn, Cd, Al, Ga, In. Int. J. Mol. Sci. 23, 939. DOI: 10.3390/ijms23020939.
- da Silva, T.U., da Silva, E.T., de Carvalho, Pougy, K., da Silva, Lima, C.H. & de Paula, Machado, S. (2022), Molecular modeling of indazole-3-carboxylic acid and its metal complexes (Zn, Ni, Co, Fe and Mn) as NO synthase inhibitors: DFT calculations, docking studies and molecular dynamics simulations. Inorg. Chem. Commun. 135, 109120. DOI: 10.1016/j. inoche.2021.109120.
- Waheeb, A.S., Kyhoiesh, H.A.K., Salman, A.W., Al-Adilee, K.J. & Kadhim, M.M. (2022). Metal Complexes of a new azo Ligand 2-[2’-(5-Nitrothiazolyl) azo]-4-methoxyphenol (NTAMP): Synthesis, Spectral Characterization and Theoretical Calculation. Inorg. Chem. Commun. 138, 109267. DOI: 10.1016/j.inoche.2022.109267.
- Zayed, E.M. & Mohamed, G. (2022). Synthesis, spectroscopic, DFT and docking studies, molecular structure of new Schiff base metal complexes. Egypt. J. Chem. 65, 633–644. DOI: 10.21608/ejchem.2021.83871.4116.
- Dege, N., Gökce, H., Doğan, O.E., Alpaslan, G., Ağar, T., Muthu, S. & Sert, Y. (2022). Quantum computational, Spectroscopic Investigations on N-(2-((2-chloro-4,5-dicyanophenyl)amino)ethyl)-4-methylbenzenesulfonamide by DFT/TD-DFT with Different Solvents, Molecular Docking and Drug-Likeness Researches. Coll. Sur: Physicochem. Engg. Aspect. 638, 128311. DOI: https://newsletter.x-mol.com/paper-Redirect/1482122577481203712.
- Kansız, S., Tolan A., Azam M., Dege N., Alam M., Sert Y., Al-Resayes S. & İçbudak H. (2022). Acesulfame based Co(II) complex: Synthesis, Structural investigations, Solvatochromism, Hirshfeld surface analysis and Molecular docking studies. Polyhedron. 218, 115762. DOI: 10.1016/j.poly.2022.115762.
- Mahmudov, I., Demir, Y., Sert, Y., Abdullayev, Y., Sujayev, A., Alwasel, S.H. & Gulcin, I. (2022). Synthesis and Inhibition Profiles of N-Benzyl- and N-Allyl Aniline Derivatives against Carbonic Anhydrase and Acetylcholinesterase – A Molecular Docking Study. Arab. J. Chem. 15, 103645. DOI: 10.1016/j.arabjc.2021.103645.
- Abdulridha, A., Albo Hay Allah, M.A., Makki, A.Q., Sert, Y., Salman, H. & Balakit, A. (2020). Corrosion inhibition of carbon steel in 1 M H2SO4 using new Azo Schiff compound: Electrochemical, gravimetric, adsorption, surface and DFT studies. J. Mol. Liq. 315, 113690. DOI: 10.1016/j. molliq.2020.113690.
- Algar J. & Flynn J.P. (1934). A new method for the synthesis of flavonols. Proc. Roy. Irish Acad. 42B, 1-7.
- Oyamada, T. (1934). A new general method for the synthesis of the derivatives of flavonol. J. Chem. Soc. Jpn. 55, 1256–1261.
- Kumar, A., Trivedi, M., Bhaskaran, S.R.K. & Singh, G. (2017). Synthetic, spectral and structural studies of a Schif base and its anticorrosive activity on mild steel in H2SO4. New J. Chem. 41, 8459–8468. DOI: 10.1039/C7NJ00896A.
- Muscat, J., Wander, A. & Harrison, N.M. (2001). On the prediction of band gaps from hybrid functional theory. Chem. Phys. Lett. 342, 397–401. DOI: 10.1016/S0009-2614(01)00616-9.
- Rienstra-Kiracofe, J.C., Barden, C.J., Brown, S.T. & Schaefer, H.F. (2001). Electron affinities of polycyclic aromatic hydrocarbons. J. Phys. Chem. 105, 524–528. DOI: 10.1021/jp003196y.
- Vektariene, A., Vektaris, G. & Svoboda, J. (2009). A theoretical approach to the nucleophilic behaviour of benzo fused thieno [3,2-b] furans using DFT and HF based reactivity descriptors. ARKIVOC. 7, 311–329. DOI: 10.3998/ark.5550190.0010.730.
- Arab, A., Gobal, F., Nahali, N. & Nahali, M. (2013). Electronic and structural properties of neutral, anionic and cationic RhxCu4–x (x= 0–4) small clusters: a DFT study. J. Clust. Sci. 24, 273–287. DOI: 10.1007%2Fs10876-013-0550-y.
- Arab, A. & Habibzadeh, M. (2016). Theoretical study of geometry, stability and properties of Al and Al Si nanoclusters. J. Nanostruct. Chem. 6, 111–119. DOI: 10.1007/s40097-015-0185-7.
- Ringbom, A. (1938). On the accuracy of colorimetric analytical methods. Anal. Chem. 115, 332–343.
- Job, P. (1928). Formation and stability of inorganic complexes in solution. Ann. di Chim. 9, 113–203.
- Vosburgh, W.C. & Cooper, G.R. (1941). Complex ions. I. The identification of complex ion in solution by spectrophotometric measurements. J. Am. Chem. Soc. 63, 437–442. DOI: 10.1021/ja01847a025.
- Yoe, J.H. & Jones, A.L. (1944). Colorimetric determination of iron with disodium-1,2-dihydroxybenzene-3,5-disulfonate. Ind. Eng. Chem. (Anal. Ed.). 16, 111–115. DOI: 10.1021/i560126a015.
- Tarasiewicz, H.P., Grudiniewska, A. & Tarasiewicz, M. (1977). An examination of chlorpromazine hydrochloride as indicator and spectrophotometric reagent for the determination of molybdenum (V). Anal. Chim. Acta. 94, 435–442. DOI: 10.1016/S0003-2670(01)84546-3.
- Verma, V.K., Guin, M., Solanki, B. & Singh, R.C. (2022). Molecular structure, HOMO and LUMO studies of Di (Hydro-xybenzyl) diselenide by quantum chemical investigations. Mater. Today Proc. 49, 3200–3204. DOI: 10.1016/j.matpr.2020.11.887.
- Üstün, E., Düşünceli, S.D. & Özdemir, I. (2019). Theoretical analysis of frontier orbitals, electronic transitions and global reactivity descriptors of M(CO)4L2 type metal carbonyl complexes: a DFT/TDDFT study. Struct. Chem. 30, 769–775. DOI: 10.1007/s11224-018-1231-0.
- Dhonchak, C., Agnihotri, N. & Kumar, A. (2021). Zirconium (IV)-3-hydroxy-2-tolyl-4H-chromen-4-one complex-the analytical and DFT studies. J. Mol. Model. 27, 336. DOI: 10.1007/s00894-021-04949-0.
- Sowrirajan, S., Elangovan, N., Ajithkumar, G. & Manoj, K.P. (2022). (E)-4-((4-Bromobenzylidene) Amino)-N-(Pyrimidin-2-yl) Benzene sulfonamide from 4-Bromobenzaldehyde and Sulfadiazine, Synthesis, Spectral (FTIR, UV–Vis), Computational (DFT, HOMO–LUMO, MEP, NBO, NPA, ELF, LOL, RDG) and Molecular Docking Studies. Polycyc. Arom. Compd. 1–16. DOI: 10.1080/10406638.2021.2006245.
- Luque, F.J., Lopez, J.M., Orozco, M., Muray, J.S. & Sen, K. (2000). Perspective on electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Theor. Chem. Acc. 103, 343–345. DOI: 10.1007/s002149900013.