Have a personal or library account? Click to login
Influence of drying and granulation process conditions on the characteristics of micronutrient chelates granules Cover

Influence of drying and granulation process conditions on the characteristics of micronutrient chelates granules

Open Access
|Oct 2023

References

  1. Grünewald, G., Westhoff, B. & Kind, M. (2010). Fluidized bed spray granulation: nucleation studies with steady-state experiments. Dry. Technol. 28, 349–360. DOI: 10.1080/07373931003641495.
  2. Rieck, C., Bück, A. & Tsotsas, E. (2020). Estimation of the dominant size enlargement mechanisms in spray fluidized bed process. AIChE Jurnal 66, e16920. DOI: 10.1002/aic.16920.
  3. Iveson, S.M., Litster, J.D., Hapgood, K. & Ennis, B.J. (2001). Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol. 117, 3–39. DOI: 10.1016/S0032-5910(01)00313-8.
  4. Burggraeve, A., Monteyne, T., Vervaet, C., Remon, J.P. & De Beer, T. (2013). Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: A review. Eur. J. Pharm. Biopharm. 83, 2–15. DOI: 10.1016/j.ejpb.2012.09.008.
  5. Michałek, B., Ochowiak, M., Bizon, K., Włodarczak, S., Krupińska, A., Matuszak, M., Boroń, D., Gierczyk, B. & Olszewski, R. (2021). Effect of adding surfactants to a solution of fertilizer on the granulation process. Energies 14(22), 7557. DOI: 10.3390/en14227557.
  6. Askarishahi, M., Maus, M., Schröder, D., Slade, D., Martinetz, M. & Jajcevic, D. (2020). Mechanistic modelling of fluid bed granulation, Part I: Agglomeration in pilot scale process. Int. J. Pharm. 573, 118837. DOI: 10.1016/j.ijpharm.2019.118837.
  7. Askarishahi, M., Salehi, N.-S., Maus, M., Schröder, D., Slade, D. & Jajcevic, D. (2020). Mechanistic modelling of fluid bed granulation, Part II: Eased process development via degree of wetness. Int. J. Pharm. 572, 118836. DOI: 10.1016/j. ijpharm.2019.118836.
  8. Saleh, K. & Guigon, P. (2007). Coating and encapsulation processes in powder technology. In Salman, A.D., Hounslow, M.J. & Seville, J.P.K. (Eds.), Granulation (pp. 323–375), Amsterdam, The Netherlands: Elsevier.
  9. Lister, J. & Ennis, B. (2004). The science and engineering of granulation processes. Dordrecht, The Netherlands: Springer-Science+Business Media.
  10. Kovalchuk, N.M., Simons, M.J.H. (2021). Surfactant-mediated wetting and spreading: Recent advances and applications. Curr. Opin. Colloid Interface 51, 101375. DOI: 10.1016/j. cocis.2020.07.004.
  11. Januszkiewicz, K., Mrozek-Niećko, A. & Różański, J. (2019). Effect of surfactants and leaf surface morphology on the evaporation time and coverage area of ZnIDHA. Plant Soil 434, 93–105. DOI: 10.1007/s11104-018-3785-4.
  12. Hemati, M., Cherif, R., Saleh, K., Pont, V. (2003). Fluidized bed coating and granulation: influence of process-related variables and physicochemical properties on the growth kinetics. Powder Technol. 130, 18–34. DOI: 10.1016/S0032-5910(02)00221-8.
  13. Zank, J., Kind, M. & Schlünder, E.-U. (2001). Particle growth in a continuously operated fluidized bed granulator. Dry. Technol. 19, 1755–1772. DOI: 10.1081/DRT-100107271.
  14. Kapur, P.C. & Fuerstenau D.W. (1969). Coalescence model for granulation. Ind. Eng. Chem. Process Des. Dev. 8, 56–62. DOI: 10.1021/i260029a010.
  15. Breuer, M. & Almohammed, N. (2015). Modelling and simulation of particle agglomeration in turbulent flows using a hard-sphere model with deterministic collision detection and enhanced structure models. Int. J. Multiph. Flow. 73, 171–206. DOI: 10.1016/j.ijmultiphaseflow.2015.03.018.
  16. PN-EN ISO7837-2000.
  17. PN-EN ISO 845:2000.
  18. ISO 12154:2014(E).
  19. Hounslow, M.J., Ryall, R.L. & Marshall, V.R. (1988). A discretized population balance for nucleation, growth, and aggregation. AIChE Jurnal 34, 1821–1832. DOI: 10.1002/aic.690341108.
  20. Vreman, A.W., Van Lare, C.E. & Hounslow, M.J. (2005). A basic population balance model for fluid bed spray granulation. Chem. Eng. Sci. 64, 4389–4398. DOI: 10.1016/j. ces.2009.07.010.
  21. Otto, R., Dürr, R. & Kienle, A. (2023). Stability of combined continuous granulation and agglomeration processes in a fluidized bed with sieve-mill-recycle. Processes 11, 473. DOI: 10.3390/pr1102047.
  22. Heinrich, S., Peglow, M., Ihlow, M., Henneberg, M. & Mörl, L. (2002). Analysis of the start-up process in continuous fluidized bed spray granulation by population balance modelling. Chem. Eng. Sci. 57, 4369–4390. DOI: 10.1016/S0009-2509(02)00352-4.
  23. Hounslow, M.J. (1990). A discretized population balance for continuous systems at steady state. AIChE J.36, 106–116. DOI: 10.1002/aic.690360113.
  24. Cronin, K., Ortiz, F.J., Ring, D. &Zhang, F. (2021). A new-time dependent rate constant of coalescence kernel for modelling of fluidized bed granulation. Powder Technol. 379, 321–334. DOI: 10.1016/j.powtec.2020.10.083.
  25. Otto, E., Dürr, R., Strenzke, G., Palis, S., Bück, A., Tsotsas, E. & Kienle, A. (2021). Kernel identification in continuous fluidized bed spray agglomeration from steady state data. Adv. Powder. Technol. 32, 2517–2529. DOI: 10.1016/j.apt.2021.05.028.
  26. Li, Z., Kessel, J., Grünewald, G., Kind, M. (2012). CFD simulation on drying and dust integration in fluidized bed spray granulation. Dry. Technol. 30, 1088–1098. DOI: 10.1080/07373937.2012.685672.
Language: English
Page range: 40 - 49
Published on: Oct 12, 2023
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Bernard Michałek, Katarzyna Bizon, Błażej Gierczyk, Tomasz Wilk, Magdalena Rapp, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.