Have a personal or library account? Click to login
Optimization of production process of epoxidized soybean oil with high oxygen content through response surface methodology Cover

Optimization of production process of epoxidized soybean oil with high oxygen content through response surface methodology

Open Access
|Jun 2023

References

  1. Sinadinović-Fišer, S., Janković, M. & Borota, O. (2012). Epoxidation of castor oil with peracetic acid formed in situ in the presence of an ion exchange resin. Chem. Engin. Processing: Proc. Intensific., 62, 106–113. DOI: 10.1016/j.cep.2012.08.005.
  2. Agu, C.M., Menkiti, M.C., Ekwe, E.B., Agulanna, A.C. (2020). Modeling and optimization of Terminalia catappa L. kernel oil extraction using response surface methodology and artificial neural network. Artific. Intellig. Agric., 4, 1–11. DOI: 10.1016/j.aiia.2020.01.001.
  3. Chen, R., Zhang, C., Kessler, M.R. (2015). Polyols and polyurethanes prepared from epoxidized soybean oil ring-opened by polyhydroxy fatty acids with varying OH numbers. J. Appl. Polymer Sci., 132 (1). DOI: 10.1002/app.41213.
  4. Mudhaffar, B., Salimon, J. (2010). Epoxidation of vegetable oils and fatty acids: catalysts, methods and advantages. J. Appl. Sci., 10 (15), 1545–1553. DOI: 10.3923/jas.2010.1545.1553.
  5. Campanella, A., Baltanas, M.A. (2005). II.REACTIVITY WITH SOLVATED ACETIC AND PERACETIC ACIDS DEGRADATION OF THE OXIRANE RING OF EPOXIDIZED VEGETABLE OILS IN LIQUID-LIQUID SYSTEMS. Latin American Appl. Res., (3), 35. DOI: 10.1007/BF02706658.
  6. Campanella, A., Fontanini, C., Baltanás, M.A. (2008). High yield epoxidation of fatty acid methyl esters with performic acid generated in situ. Chem. Engin. J., 414(3), 466–475. DOI: 10.1016/j.cej.2008.07.016.
  7. Cai, X., Zheng, J.L., Aguilera, A.F., Vernières-Hassimi, L., Tolvanen, P., Salmi, T., Leveneur, S. (2018). Influence of ring-opening reactions on the kinetics of cottonseed oil epoxidation. Internat. J. Chem. Kinetics, 50(10), 726–741. DOI: 10.1002/kin.21208.
  8. Santacesaria, E., Turco, R., Russo, V., Tesser, R., Di Serio, M. (2020). Soybean Oil Epoxidation: Kinetics of the Epoxide Ring Opening Reactions. Processes, 8(9). DOI: 10.3390/pr8091134.
  9. Nhan, N.P.T., Hien, T.T., Nhan, L.T.H., Anh, P.N.Q., Huy, L.T., Nguyen, T.C.T., Nguyen, D.T., Bach, L.G. (2018). Application of Response Surface Methodology to Optimize the Process of Saponification Reaction from Coconut Oil in Ben Tre – Vietnam. Solid State Phenomena, 279, 235–239. DOI: 10.4028/www.scientific.net/SSP.279.235.
  10. Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. DOI: 10.1016/j.talanta.2008.05.019.
  11. Ferreira, S.C., Bruns, R., Ferreira, H.S., Matos, G.D., David, J., Brandão, G., da Silva, E.P., Portugal, L., Dos Reis, P., Souza, A. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica chimica acta, 597 (2), 179–186. DOI: 10.1016/j.aca.2007.07.011.
  12. Beg, S., Akhter, S. (2021). Box–Behnken designs and their applications in pharmaceutical product development. Design of Experiments for Pharmaceutical Product Development: Volume I: Basics and Fundamental Principles. 77–85. DOI: 10.1016/B978-0-12-815799-2.00003-4.
  13. Box, G.E., Behnken, D.W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2(4), 455–475. DOI: 10.2307/1266454.
  14. Kenechi, N.O., Osarumehnsen, A.F., Linus, C. (2021) Optimization on Rubber Seed Oil Epoxidation Process Parameters Using Response Surface Methodology. Iranian J. Chem. & Chem. Engin. (5/6), 40. DOI: 10.30492/IJCCE.2020.40345.
  15. Elkelawy, M., Bastawissi, H.A.-E., Esmaeil, K.K., Radwan, A.M., Panchal, H. Sadasivuni, K.K., Suresh, M., Israr, M. (2020). Maximization of biodiesel production from sunflower and soybean oils and prediction of diesel engine performance and emission characteristics through response surface methodology. Fuel, 266. DOI: 10.1016/j.fuel.2020.117072.
  16. Paquot, C. (2013). Standard methods for the analysis of oils, fats and derivatives. Elsevier:. DOI: 10.1351/pac198153030783.
  17. Musik, M., Milchert, E., Malarczyk-Matusiak, K. (2018). Technological parameters of epoxidation of sesame oil with performic acid. Polish J. Chem. Technol., 20(3), 53–59. DOI: 10.2478/pjct-2018-0038.
  18. Campanella, A., Fontanini, C., Baltanas, M.A. (2008). High yield epoxidation of fatty acid methyl esters with performic acid generated in situ. Chem. Engin. J., 144(3), 466–475. DOI: 10.1016/j.cej.2008.07.016.
  19. Pongsumpun, P., Iwamoto, S., Siripatrawan, U. (2020). Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and anti-fungal activity. Ultrasonics sonochemistry, 60, 104604. DOI: 10.1016/j.ultsonch.2019.05.021.
  20. Kousaalya, A.B., Beyene, S.D., Gopal, V., Ayalew, B., Pilla, S. (2018). Green epoxy synthesized from Perilla frutescens: A study on epoxidation and oxirane cleavage kinetics of high-linolenic oil. Industrial Crops and Products, 123, 25–34. DOI: 10.1016/j.indcrop.2018.06.047.
  21. Zaher, F., El-Mallah, M., El-Hefnawy, M. (1989). Kinetics of oxirane cleavage in epoxidized soybean oil. J. Amer. Oil Chemists’ Soc., 66(5), 698–700. DOI: 10.1007/BF02669955.
  22. Rice, F., Reiff, O.M. (2002). The thermal decomposition of hydrogen peroxide. J. Phys. Chem., 31 (9), 1352–1356. DOI: 10.1007/BF02669955.
  23. Campanella, A., Baltanás, M. (2005). Degradation of the oxirane ring of epoxidized vegetable oils in liquid-liquid systems: I. Hydrolysis and attack by H2O2. Latin Amer. Appl. Res., 35(3), 205–210. DOI: 10.1007/BF02706658.
  24. Dong, C.-H., Xie, X.-Q., Wang, X.-L., Zhan, Y., Yao, Y.-J. (2009). Application of Box-Behnken design in optimisation for polysaccharides extraction from cultured mycelium of Cordyceps sinensis. Food Bioprod. Proc., 87(2), 139–144. DOI: 10.1016/j.fbp.2008.06.004.
  25. Vianello, C., Piccolo, D., Lorenzetti, A., Salzano, E., Maschio, G. (2018). Study of soybean oil epoxidation: effects of sulfuric acid and the mixing program. Ind. & Engin. Chem. Res., 57(34), 11517–11525. DOI: 10.1021/acs.iecr.8b01109.
  26. Farias, M. Martinelli, M. Bottega, D.P. (2010). Epoxidation of soybean oil using a homogeneous catalytic system based on a molybdenum (VI) complex. Appl. Catal. A: General, 384 (1-2), 213–219. DOI: 10.1016/j.apcata.2010.06.038.
  27. Janković, M., Sinadinović-Fišer, S., Govedarica, O., Pavličević, J., Budinski-Simendić, J. (2017). Kinetics of soybean oil epoxidation with peracetic acid formed in situ in the presence of an ion exchange resin: pseudo-homogeneous model. Chem. Ind. Chem. Engin. Quarterly, 23(1), 97–111. DOI: 10.2298/CICEQ150702014J.
  28. Turco, R., Vitiello, R., Russo, V., Tesser, R., Santacesaria, E., Di Serio, M. (2013). Selective epoxidation of soybean oil with performic acid catalyzed by acidic ionic exchange resins. Green Proc. Synthesis, 2(5), 427–434. DOI: 10.1515/gps-2013-0045.
  29. Wu, J., Jiang, P., Qin, X., Ye, Y., Leng, Y. (2014). Peroxopolyoxotungsten-based Ionic Hybrid as a Highly Efficient Recyclable Catalyst for Epoxidation of Vegetable oil with H2O2. Bull. Korean Chem. Soc., 35(6), 1675–1680. DOI: 10.5012/bkcs.2014.35.6.1675.
Language: English
Page range: 21 - 29
Published on: Jun 30, 2023
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Fengyan Zhang, Yonglu Dong, Shudong Lin, Xuefeng Gui, Jiwen Hu, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.