Have a personal or library account? Click to login

Optimization of production process of epoxidized soybean oil with high oxygen content through response surface methodology

Open Access
|Jun 2023

References

  1. Sinadinović-Fišer, S., Janković, M. & Borota, O. (2012). Epoxidation of castor oil with peracetic acid formed in situ in the presence of an ion exchange resin. Chem. Engin. Processing: Proc. Intensific., 62, 106–113. DOI: 10.1016/j.cep.2012.08.005.
  2. Agu, C.M., Menkiti, M.C., Ekwe, E.B., Agulanna, A.C. (2020). Modeling and optimization of Terminalia catappa L. kernel oil extraction using response surface methodology and artificial neural network. Artific. Intellig. Agric., 4, 1–11. DOI: 10.1016/j.aiia.2020.01.001.
  3. Chen, R., Zhang, C., Kessler, M.R. (2015). Polyols and polyurethanes prepared from epoxidized soybean oil ring-opened by polyhydroxy fatty acids with varying OH numbers. J. Appl. Polymer Sci., 132 (1). DOI: 10.1002/app.41213.
  4. Mudhaffar, B., Salimon, J. (2010). Epoxidation of vegetable oils and fatty acids: catalysts, methods and advantages. J. Appl. Sci., 10 (15), 1545–1553. DOI: 10.3923/jas.2010.1545.1553.
  5. Campanella, A., Baltanas, M.A. (2005). II.REACTIVITY WITH SOLVATED ACETIC AND PERACETIC ACIDS DEGRADATION OF THE OXIRANE RING OF EPOXIDIZED VEGETABLE OILS IN LIQUID-LIQUID SYSTEMS. Latin American Appl. Res., (3), 35. DOI: 10.1007/BF02706658.
  6. Campanella, A., Fontanini, C., Baltanás, M.A. (2008). High yield epoxidation of fatty acid methyl esters with performic acid generated in situ. Chem. Engin. J., 414(3), 466–475. DOI: 10.1016/j.cej.2008.07.016.
  7. Cai, X., Zheng, J.L., Aguilera, A.F., Vernières-Hassimi, L., Tolvanen, P., Salmi, T., Leveneur, S. (2018). Influence of ring-opening reactions on the kinetics of cottonseed oil epoxidation. Internat. J. Chem. Kinetics, 50(10), 726–741. DOI: 10.1002/kin.21208.
  8. Santacesaria, E., Turco, R., Russo, V., Tesser, R., Di Serio, M. (2020). Soybean Oil Epoxidation: Kinetics of the Epoxide Ring Opening Reactions. Processes, 8(9). DOI: 10.3390/pr8091134.
  9. Nhan, N.P.T., Hien, T.T., Nhan, L.T.H., Anh, P.N.Q., Huy, L.T., Nguyen, T.C.T., Nguyen, D.T., Bach, L.G. (2018). Application of Response Surface Methodology to Optimize the Process of Saponification Reaction from Coconut Oil in Ben Tre – Vietnam. Solid State Phenomena, 279, 235–239. DOI: 10.4028/www.scientific.net/SSP.279.235.
  10. Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. DOI: 10.1016/j.talanta.2008.05.019.
  11. Ferreira, S.C., Bruns, R., Ferreira, H.S., Matos, G.D., David, J., Brandão, G., da Silva, E.P., Portugal, L., Dos Reis, P., Souza, A. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica chimica acta, 597 (2), 179–186. DOI: 10.1016/j.aca.2007.07.011.
  12. Beg, S., Akhter, S. (2021). Box–Behnken designs and their applications in pharmaceutical product development. Design of Experiments for Pharmaceutical Product Development: Volume I: Basics and Fundamental Principles. 77–85. DOI: 10.1016/B978-0-12-815799-2.00003-4.
  13. Box, G.E., Behnken, D.W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2(4), 455–475. DOI: 10.2307/1266454.
  14. Kenechi, N.O., Osarumehnsen, A.F., Linus, C. (2021) Optimization on Rubber Seed Oil Epoxidation Process Parameters Using Response Surface Methodology. Iranian J. Chem. & Chem. Engin. (5/6), 40. DOI: 10.30492/IJCCE.2020.40345.
  15. Elkelawy, M., Bastawissi, H.A.-E., Esmaeil, K.K., Radwan, A.M., Panchal, H. Sadasivuni, K.K., Suresh, M., Israr, M. (2020). Maximization of biodiesel production from sunflower and soybean oils and prediction of diesel engine performance and emission characteristics through response surface methodology. Fuel, 266. DOI: 10.1016/j.fuel.2020.117072.
  16. Paquot, C. (2013). Standard methods for the analysis of oils, fats and derivatives. Elsevier:. DOI: 10.1351/pac198153030783.
  17. Musik, M., Milchert, E., Malarczyk-Matusiak, K. (2018). Technological parameters of epoxidation of sesame oil with performic acid. Polish J. Chem. Technol., 20(3), 53–59. DOI: 10.2478/pjct-2018-0038.
  18. Campanella, A., Fontanini, C., Baltanas, M.A. (2008). High yield epoxidation of fatty acid methyl esters with performic acid generated in situ. Chem. Engin. J., 144(3), 466–475. DOI: 10.1016/j.cej.2008.07.016.
  19. Pongsumpun, P., Iwamoto, S., Siripatrawan, U. (2020). Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and anti-fungal activity. Ultrasonics sonochemistry, 60, 104604. DOI: 10.1016/j.ultsonch.2019.05.021.
  20. Kousaalya, A.B., Beyene, S.D., Gopal, V., Ayalew, B., Pilla, S. (2018). Green epoxy synthesized from Perilla frutescens: A study on epoxidation and oxirane cleavage kinetics of high-linolenic oil. Industrial Crops and Products, 123, 25–34. DOI: 10.1016/j.indcrop.2018.06.047.
  21. Zaher, F., El-Mallah, M., El-Hefnawy, M. (1989). Kinetics of oxirane cleavage in epoxidized soybean oil. J. Amer. Oil Chemists’ Soc., 66(5), 698–700. DOI: 10.1007/BF02669955.
  22. Rice, F., Reiff, O.M. (2002). The thermal decomposition of hydrogen peroxide. J. Phys. Chem., 31 (9), 1352–1356. DOI: 10.1007/BF02669955.
  23. Campanella, A., Baltanás, M. (2005). Degradation of the oxirane ring of epoxidized vegetable oils in liquid-liquid systems: I. Hydrolysis and attack by H2O2. Latin Amer. Appl. Res., 35(3), 205–210. DOI: 10.1007/BF02706658.
  24. Dong, C.-H., Xie, X.-Q., Wang, X.-L., Zhan, Y., Yao, Y.-J. (2009). Application of Box-Behnken design in optimisation for polysaccharides extraction from cultured mycelium of Cordyceps sinensis. Food Bioprod. Proc., 87(2), 139–144. DOI: 10.1016/j.fbp.2008.06.004.
  25. Vianello, C., Piccolo, D., Lorenzetti, A., Salzano, E., Maschio, G. (2018). Study of soybean oil epoxidation: effects of sulfuric acid and the mixing program. Ind. & Engin. Chem. Res., 57(34), 11517–11525. DOI: 10.1021/acs.iecr.8b01109.
  26. Farias, M. Martinelli, M. Bottega, D.P. (2010). Epoxidation of soybean oil using a homogeneous catalytic system based on a molybdenum (VI) complex. Appl. Catal. A: General, 384 (1-2), 213–219. DOI: 10.1016/j.apcata.2010.06.038.
  27. Janković, M., Sinadinović-Fišer, S., Govedarica, O., Pavličević, J., Budinski-Simendić, J. (2017). Kinetics of soybean oil epoxidation with peracetic acid formed in situ in the presence of an ion exchange resin: pseudo-homogeneous model. Chem. Ind. Chem. Engin. Quarterly, 23(1), 97–111. DOI: 10.2298/CICEQ150702014J.
  28. Turco, R., Vitiello, R., Russo, V., Tesser, R., Santacesaria, E., Di Serio, M. (2013). Selective epoxidation of soybean oil with performic acid catalyzed by acidic ionic exchange resins. Green Proc. Synthesis, 2(5), 427–434. DOI: 10.1515/gps-2013-0045.
  29. Wu, J., Jiang, P., Qin, X., Ye, Y., Leng, Y. (2014). Peroxopolyoxotungsten-based Ionic Hybrid as a Highly Efficient Recyclable Catalyst for Epoxidation of Vegetable oil with H2O2. Bull. Korean Chem. Soc., 35(6), 1675–1680. DOI: 10.5012/bkcs.2014.35.6.1675.
Language: English
Page range: 21 - 29
Published on: Jun 30, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Fengyan Zhang, Yonglu Dong, Shudong Lin, Xuefeng Gui, Jiwen Hu, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.