Belitz, H.-D., Grosch, W. & Schieberle, P. (2004) Aroma compounds. In H.-D. Belitz, W. Grosch & P. Schieberle (Eds.), Food chemistry (pp. 342–408). Heidelberg: Springer Berlin Heidelberg.
Paravisini, L. & Guichard, E. (2016). Interactions between aroma compounds and food matrix. In E. Guichard, C., Salles, M., Morzel & A.-M. Le Bon (Eds.), Flavour from food to perception (p p. 208–234). Chichester, West Sussex; Hoboken, NJ: John Wiley & Sons Inc.
Akacha, N.B. & Gargouri, M. (2015). Microbial and enzymatic technologies used for the production of natural aroma compounds: Synthesis, recovery modeling, and bioprocesses. Food Bioprod. Process. 94, 675–706. DOI: 10.1016/j.fbp.2014.09.011.
Saffarionpour, S. & Ottens, M. (2018). Recent advances in techniques for flavor recovery in liquid food processing. Food Eng. Rev. 10, 81–94. DOI: 10.1007/s12393-017-9172-8.
Paulino, B.N., Sales, A., Felipe, L., Pastore, G.M., Molina, G. & Bicas, J.L. (2021). Recent advances in the microbial and enzymatic production of aroma compounds. Curr. Opin. Food Sci. 37, 98–106. DOI: 10.1016/j.cofs.2020.09.010.
Nongonierma, A., Voilley, A., Cayot, P., Le Quéré, J.-L. & Springett, M. (2006). Mechanisms of extraction of aroma compounds from foods, using adsorbents. Effect of various parameters. Food Rev. Int. 22, 51–94. DOI: 10.1080/87559120500379951.
Castro-Muñoz, R. (2019). Pervaporation: The emerging technique for extracting aroma compounds from food systems. J. Food Eng. 253, 27–39. DOI: 10.1016/j.jfoodeng.2019.02.013.
Lomelí-Martín, A., Martínez, L.M., Welti-Chanes, J. & Escobedo-Avellaneda, Z. (2021). Induced changes in aroma compounds of foods treated with high hydrostatic pressure: A review. Foods. 10, 878. DOI: 10.3390/foods10040878.
Mortzfeld, F.B., Hashem, C., Vranková., K., Winkler, M. & Rudroff, F. (2020). Pyrazines: Synthesis and industrial application of these valuable flavor and fragrance compounds. Biotechnol. J. 15, 2000064. DOI: 10.1002/biot.202000064.
Dias, A.L.B., Hatami, T., Martínez, J. & Ciftci, O.N. (2020). Biocatalytic production of isoamyl acetate from fusel oil in supercritical CO2. J. Supercrit. Fluids. 164, 104917. DOI: 10.1016/j.supflu.2020.104917.
Dudu, A.I., Lăcătuş, M.A., Bencze, L.C., Paizs, C. & Toşa, M.I. (2021). Green process for the enzymatic synthesis of aroma compounds mediated by lipases entrapped in tailored sol–gel matrices. ACS Sustainable Chem. Eng. 9, 5461–5469. DOI: 10.1021/acssuschemeng.1c00965.
Yildirim, D. & Tükel, S.S. (2013). Immobilized Pseudomonas sp. lipase: A powerful biocatalyst for asymmetric acylation of (±)-2-amino-1-phenylethanols with vinyl acetate. Process Biochem. 48, 819–830. DOI: 10.1016/j.procbio.2013.04.019.
Kapoor, M. & Gupta, M.N. (2012). Lipase promiscuity and its biochemical applications. Process Biochem. 47, 555–569. DOI: 10.1016/j.procbio.2012.01.011.
Dias, A.L.B., dos Santos, P. & Martínez, J. (2018). Supercritical CO2 technology applied to the production of flavor ester compounds through lipase-catalyzed reaction: A review. J. CO2Util. 23, 159–178. DOI: 10.1016/j.jcou.2017.11.011.
Mehta, A., Grover, C., Bhardwaj, K.K & Gupta, R. (2020). Application of lipase purified from Aspergillus fumigatus in the syntheses of ethyl acetate and ethyl lactate. J. Oleo Sci. 69, 23–29. DOI: 10.5650/jos.ess19202.
Yildirim, D., Baran, E., Ates, S., Yazici, B. & Tukel, S.S. (2019). Improvement of activity and stability of Rhizomucor miehei lipase by immobilization on nanoporous aluminium oxide and potassium sulfate microcrystals and their applications in the synthesis of aroma esters. Biocatal. Biotransform. 37, 210–223. DOI: 10.1080/10242422.2018.1530766.
Ozyilmaz, G. & Yağız, E. (2017). Comparison of the performance of entrapped and covalently immobilized lipase in the synthesis of pear flavor. Turk. J. Biochem. 42, 339–347. DOI: 10.1515/tjb-2016-0110.
Patel, V., Gajera, H., Gupta, A., Manocha, L. & Madamwar D. (2015). Synthesis of ethyl caprylate in organic media using Candida rugosa lipase immobilized on exfoliated graphene oxide: Process parameters and reusability studies. Biochem. Eng. J. 95, 62–70. DOI: 10.1016/j.bej.2014.12.007.
Kurtovic, I., Marshall, S.N., Cleaver, H.L. & Miller, M.R. (2016). The use of immobilised digestive lipase from Chinook salmon (Oncorhynchus tshawytscha) to generate flavour compounds in milk. Food Chem. 199, 323–329. DOI: 10.1016/j.foodchem.2015.12.027.
Kreiner, M. & Parker, M.C. (2005). Protein-coated microcrystals for use in organic solvents: Application to oxidoreductases. Biotechnol. Lett. 27, 1571–1577. DOI: 10.1007/s10529-005-1800-3.
Yildirim, D., Toprak, A., Alagöz, D. & Tukel, S.S. (2019). Protein-coated microcrystals of Prunus armeniaca hydroxynitrile lyase: an effective and recyclable biocatalyst for synthesis of (R)-mandelonitrile. Chem. Pap. 73, 185–193. DOI: 10.1007/s11696-018-0577-5.
Monteiro, R.R.C., dos Santos, J.C.S., Alcántara, A.R. & Fernandez-Lafuente R. (2020). Enzyme-coated micro-crystals: An almost forgotten but very simple and elegant immobilization strategy. Catalysts. 10, 891. DOI: 10.3390/catal10080891.
Fehér, E., Illeová, V., Kelemen-Horváth, I., Bélafi-Bakó, K., Polakovič, M. & Gubicza, L. (2008). Enzymatic production of isoamyl acetate in an ionic liquid–alcohol biphasic system. J. Mol. Catal. B: Enzym. 50, 28–32. DOI: 10.1016/j.molcatb.2007.09.019.
Zare, M., Golmakani, M.-T. & Niakousari, M. (2019). Lipase synthesis of isoamyl acetate using different acyl donors: Comparison of novel esterification techniques. LWT. 2019, 101, 214–219. DOI: 10.1016/j.lwt.2018.10.098.
Zare, M., Golmakani, M.-T. & Sardarian, A. (2020). Green synthesis of banana flavor using different catalysts: a comparative study of different methods. Green Chem. Lett. Rev. 13, 83–92. DOI: 10.1080/17518253.2020.1737739.
Quilter, M.G., Hurley, J.C., Lynch, F.J. & Murphy, M.G. (2003). The production of isoamyl acetate from amyl alcohol by Saccharomyces cerevisiae. J. Inst. Brew. 109, 34–40. DOI: 10.1002/j.2050-0416.2003.tb00591.x.
Ando, H., Kurata, A. & Kishimoto, N. (2015). Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavour component of Japanese sake (Ginjo-shu). J. Appl. Microbiol. 118, 873–880. DOI: 10.1111/jam.12764.
Yildirim, D., Tükel, S.S., Alptekin, Ö. & Alagöz, D. (2014). Optimization of immobilization conditions of Mucor miehei lipase onto Florisil via polysuccinimide spacer arm using response surface methodology and application of immobilized lipase in asymmetric acylation of 2-amino-1-phenylethanols. J. Mol. Catal. B: Enzym. 100, 91–103. DOI: 10.1016/j.molcatb.2013.12.003.
Cai, X., Wang, W., Lin, L., He, D., Shen, Y., Wei, W. & Wei, D. (2017). Cinnamyl esters synthesis by lipase-catalyzed transesterification in a non-aqueous system. Catal. Lett. 147, 946–952. DOI: 10.1007/s10562-017-1994-8.
Yadav, G.D. & Devendran, S. (2012). Lipase catalyzed synthesis of cinnamyl acetate via transesterification in non-aqueous medium. Process Biochem. 47, 496–502. DOI: 10.1016/j.procbio.2011.12.008.
Ozyilmaz, G. & Gezer, E. (2010). Production of aroma esters by immobilized Candida rugosa and porcine pancreatic lipase into calcium alginate gel. J. Mol. Catal. B: Enzym. 64, 140–145. DOI: 10.1016/j.molcatb.2009.04.013.
de Oliveira, T.P., Santos, M.P.F., Brito, M.J.P. & Veloso, C.M. (2022). Incorporation of metallic particles in activated carbon used in lipase immobilization for production of isoamyl acetate. J. Chem. Technol. Biotechnol. 97, 1736–1746. DOI: 10.1002/jctb.7043.
Ghamgui, H., Karra-Chaâbouni, M., Bezzine, S., Miled, N. & Gargouri, Y. (2006). Production of isoamyl acetate with immobilized Staphylococcus simulans lipase in a solvent-free system. Enzyme Microb. Technol. 38, 788–794. DOI: 10.1016/j.enzmictec.2005.08.011.
Padilha, G.S., Tambourgi, E.B. & Alegre, R.M. (2018). Evaluation of lipase from Burkholderia cepacia immobilized in alginate beads and application in the synthesis of banana flavor (isoamyl acetate). Chem. Eng. Commun. 205, 23–33. DOI: 10.1080/00986445.2017.1370707.
Güvenç, A., Kapucu, N. & Mehmetoğlu, Ü. (2002). The production of isoamyl acetate using immobilized lipases in a solvent-free system. Process Biochem. 38, 379–386. DOI: 10.1016/S0032-9592(02)00099-7.
Wolfson, A., Atyya, A., Dlugy, C. & Tavor, D. (2010). Glycerol triacetate as solvent and acyl donor in the production of isoamyl acetate with Candida antarctica lipase B. Bioprocess Biosyst. Eng. 33, 363–366. DOI: 10.1007/s00449-009-0333-x.
Nyari, N., Paulazzi, A., Zamadei, R., Steffens, C., Zabot, G.L., Tres, M.V., Zeni, J., Venquiaruto, L., Dallago, R.M. (2018). Synthesis of isoamyl acetate by ultrasonic system using Candida antarctica lipase B immobilized in polyurethane. J. Food Process Eng. 41, e12812. DOI: 10.1111/jfpe.12812.