Have a personal or library account? Click to login
Investigation of the co-processing technology of crude oil and coal and its deployment Cover

Investigation of the co-processing technology of crude oil and coal and its deployment

Open Access
|Dec 2022

References

  1. 1. Ye, M., Zhu, W.L. & Xu, S.L. (2019). Coordinated development of coal chemical and petrochemical lndustries in China. Bull. Chinese Acad. Sci. 34(4), 417–425. DOI: 10.16418/j. issn.1000-3045.2019.04.006.
  2. 2. Bae, J.S., Hwang, I.S. & Kweon, Y.J. (2012). Economic evaluations of direct, indirect and hybrid coal liquefaction. Korean J. Chem. Eng. 29(7), 868–875. DOI: 10.1007/s11814-011-0266-3.10.1007/s11814-011-0266-3
  3. 3. Hu, F.T., Tan, B.F. & Wang, G.Y. (2019). Technical progress and industrialization status of coal to fuel oil in China. Clean Coal Technol. 25(1), 57–63. DOI: 10.13226/j.issn.1006-6772.18122501.
  4. 4. Fwng, J., Li, J. & Li, W. (2013). Influences of chemical structure and physical properties of coal macerals on coal liquefaction by quantum chemistry calculation. Fuel. Process. Technol. 109, 19–26. DOI: 10.1016/j.fuproc.2012.09.033.10.1016/j.fuproc.2012.09.033
  5. 5. Fratczak, J., Herrador, J.M.H. & Lederer, J. (2018). Direct primary brown coal liquefaction via non-catalytic and catalytic co-processing with model, waste and petroleum-derived hydrogen donors. Fuel. 234, 364–370. DOI: 10.1016/j.fuel.2018.06.131.10.1016/j.fuel.2018.06.131
  6. 6. Huang, Q., Zhang, W. & Yang, C. (2015). Modeling transport phenomena and reactions in a pilot slurry airlift loop reactor for direct coal liquefaction. Chem. Eng. Sci. 135, 441–451. DOI: 10.1016/j.ces.2015.01.003.10.1016/j.ces.2015.01.003
  7. 7. Tong, R., Zhang, B. & Yang, X. (2021). A life cycle analysis comparing coal liquefaction techniques: A health-based assessment in China. Sustain. Energy. Techn. 44, 101000. DOI: 10.1016/j.seta.2021.101000.10.1016/j.seta.2021.101000
  8. 8. Wang, Z.C., Ge, Y. & Shui, H.F. (2015). Molecular structure and size of asphaltene and preasphaltene from direct coal liquefaction. Fuel. Process. Technol. 137, 305–311. DOI: 10.1016/j.fuproc.2015.03.015.10.1016/j.fuproc.2015.03.015
  9. 9. Hirano, K. (2000). Outline of NEDOL coal liquefaction process development (pilot plant program). Fuel. Process. Technol. 62(2–3), 109–118. DOI: 10.1016/S0378-3820(99)00121-6.10.1016/S0378-3820(99)00121-6
  10. 10. Liu, Z., Shi, S. & Li, Y. (2010). Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering. Chem. Eng. Sci. 65(1), 12–17. DOI: –10.1016/j.ces.2009.05.014.10.1016/j.ces.2009.05.014
  11. 11. Li, C., Meng, H. & Yang, T. (2018). Study on catalytic performance of oil-soluble iron-nickel bimetallic catalyst in coal/oil co-processing. Fuel. 219, 30–36. DOI: 10.1016/j. fuel.2018.01.068.10.1016/j.fuel.2018.01.068
  12. 12. Fan, Y.L., Chang, F.Y. & Jiang, Z.S. (2021). Reaction process and hydrogen transfer mechanism in coal-oil coprocessing. Acta Petrolei Sinica (Petroleum Processing Section). 37(04), 807–814. DOI: 10.3969/j.issn.1001-8719.2021.04.009.
  13. 13. Sun, Y.D., Wei, C. & Han, Z.X. (2022). Mechanism of coal oil co-refining under mild condition in hydrogen. J. China Univ. Petrol. (Edition of Natural Science). 46(3), 174–179. DOI: 10.3969/j.issn.1673-5005.2022.03.020.
  14. 14. Huang, C.F., Li, D.P. & Yang, T. (2016). Status and research trends of co-processing of coal and oil. Modern Chem. Ind. 36(8), 8–13. DOI: 10.16606/j.cnki.issn0253-4320.2016.08.003.
  15. 15. Li, C., Qin, Y. & Yang, T.F. (2017). Analysis of solid residues from the co-processing of different rank coals and oils. J. Fuel Chem. Technol., 45(4), 436–441. DOI: https://kns.cnki.net/kcms/detail/14.1140.TQ.20170411.1015.014.html.
  16. 16. Yan, B. (2017). Study on the rheology of coal–oil slurries during heating at high pressure. Int. J. Coal Sci. Techn. 4(3), 274–280. DOI: 10.1007/s40789-017-0170-5.10.1007/s40789-017-0170-5
  17. 17. Wang, G.Y., Wang, X.Q. & Zhao, Y. (2022). Study on preparation and hydrogenation performance of organo molybdenum catalyst for coal-oil co-processing. Coal Conversion, 45(4), 55–63. DOI: 10.19726/j.cnki.ebcc.202204007.10.21203/rs.3.rs-1216417/v1
  18. 18. Wu, X.Z., Shu, G.P. & Li, K.J. (2015). Direct coal liquefaction process and engineering. Beijing, China: Science Press.
  19. 19. Shi, S.D. (2012). Engineering fundamentals of coal hydrogenation and liquefaction. Beijing, China: Chemical Industry Press.
  20. 20. Xie, K.C. (2002). Structure and reactivity of coal. Beijing, China: Science Press.
  21. 21. Zhang, X.L. & Zhang, J. (2012). Coal chemistry. Beijing, China: China Coal Industry Publishing House.
  22. 22. Barraza, J., Coley-Silva, E. & Pineres, J. (2016). Effect of temperature, solvent/coal ratio and beneficiation on conversion and product distribution from direct coal liquefaction. Fuel. 172, 153–159. DOI: 10.1016/j.fuel.2015.12.072.10.1016/j.fuel.2015.12.072
  23. 23. Wu, C.L. (2010). Direct coal liquefaction. Beijing, China: Chemical Industry Press.10.1016/S1351-4180(10)70194-X
Language: English
Page range: 39 - 50
Published on: Dec 26, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Suan Li, Qi Liu, Qingyu Deng, Hang Ye, Xuejie Zhou, Aijun Qiao, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.