Have a personal or library account? Click to login
Experimental research on the volatilization and condensation of ammonium bisulfate as SCR byproduct Cover

Experimental research on the volatilization and condensation of ammonium bisulfate as SCR byproduct

Open Access
|Dec 2022

References

  1. 1. Wang, L.L., Yang, M., Wu, S.S., Huang, C.Y., Zhang, Q.W., Zhu, L., Yao, Y., He, J.L., Kong, F.H. & He, J. (2016). Difficulties and countermeasures of SCR denitrification system operation in ultra low emission situation. THERMAL POWER GENERATION. 45(12), 19–24. DOI: 10.19666/j. rlfd.201912286.
  2. 2. Ma, S.C., Deng, Y., Wu, W.L., Zhang, L.N., Ma, J.X. & Zhang, X.N. (2016). Experimental research on characteristic of ABS formation in the process of SCR. J. Chinese Soc. Power Engin. 36(2), 143–150. DOI: 10.3969/j.issn.1674-7607.2016.02.010.
  3. 3. Mark, A., Nan-Yu, T. & J.A., D. (2003). Density functional theory studies of mechanistic aspects of the SCR reaction on vanadium oxide catalysts. J. Catal. 213(2), 115–125. DOI: 10.1016/S0021-9517(02)00031-3.10.1016/S0021-9517(02)00031-3
  4. 4. Ya, J.S., H, S., Yu, H.Z, Hong, M.F., Ya, P.Z. & Lin, J.Y. (2016). Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts. Fuel Proces. Technol. 150, 141–147. DOI: 10.1016/j. fuproc.2016.05.016.10.1016/j.fuproc.2016.05.016
  5. 5. Srivastava, R.K., Hall, R.E., Khan, S., Culligan, K. & Bruce, W.L. (2005). Nitrogen oxides emission control options for coal-fire delectric utility boiler. J. Air & Waste Manag. Assoc. 55, 1367–1388. DOI: 10.1080/10473289.2005.10464736.10.1080/10473289.2005.1046473616259432
  6. 6. Wang, Y.C. & Tang, G.H. (2016). Prediction of sulfuric acid dew point temperature on heat transfer fin surface. Appl. Thermal Engin. 98, 492–501. DOI: 10.1016/j.applthermaleng.2015.12.078.10.1016/j.applthermaleng.2015.12.078
  7. 7. Zhu, Y.Q., Zhou, W.H., Xia, C. & Hou, Q.C. (2022). Application and Development of Selective Catalytic Reduction Technology for Marine Low-Speed Diesel Engine: Trade-Off among High Sulfur Fuel, High Thermal Efficiency, and Low Pollution Emission. Atmosphere. 13, 1–21. DOI: 10.3390/atmos13050731.10.3390/atmos13050731
  8. 8. Zhou, C.Y., Zhang, L.N., Deng, Y. & Ma, S.C. (2016). Research progress on ammonium bisulfate formation and control in the process of selective catalytic reduction. Environ. Progress & Sustainable Energy. DOI: 10.1002/ep.12409.10.1002/ep.12409
  9. 9. Muzio, L., Bogseth, S., Himes, R., Chien, Y.C. & Rankin, D.D. (2017). Ammonium bisulfate formation and reduced load SCR operation. Fuel. 206, 180–189. DOI: 10.1016/j. fuel.2017.05.081.10.1016/j.fuel.2017.05.081
  10. 10. Liu, K.W. & Chen, T.L. (2002). Studies on the thermal decomposition of ammonium sulfate. Chem. Res. Applic. 14(6), 737–738. DOI: 10.3969/j.issn.1004-1656.2002.06.038.
  11. 11. Wang, L.M., Bu, Y.F., Li, D.C., Tang, C.L. & Che, D.F. (2019). Single and multi-objective optimizations of rotary regenerative air preheater for coal-fired power plant considering the ammonium bisulfate deposition. Internat. J. Thermal Sci. 136, 52–59. DOI: 10.1016/j.ijthermalsci.2018.10.005.10.1016/j.ijthermalsci.2018.10.005
  12. 12. Zhao, H., Zhang, J.K. & Zhang, K. (2018). Investigation of the deposition characteristics of ammonium bisulfate and fly ash blend using an on-line digital image technique: Effect of deposition surface temperature. Fuel Proc. Technol. 179, 359–368. DOI: 10.1016/j.fuproc.2018.07.030.10.1016/j.fuproc.2018.07.030
  13. 13. Luo, M., Zhao, L.L. & Li, S.Y. (2016). Numerical simulation of ash deposition with adhesion of NH4HSO4 in an air preheater. Chin. Soc. Power Eng. 36, 883–888. DOI: 10.3969/j. issn.1674-7607.2016.11.005.
  14. 14. Chen, H., Pan, P.Y., Wang, Y.G. & Zhao, Q.X. (2016). Field study on the corrosion and ash deposition of low-temperature heating surface in a large-scale coal-fired power plant. Fuel. 208, 149–159. DOI: 10.1016/j.fuel.2017.06.120.10.1016/j.fuel.2017.06.120
  15. 15. Wei, W., Sun, F.Z. & Ma, L. (2018). Effect of fine ash particles on formation mechanism of fouling covering heat exchangers in coal-fired power plants. Appl. Thermal Engin. 142, 269–277. DOI: 10.1016/j.applthermaleng.2018.06.086.10.1016/j.applthermaleng.2018.06.086
  16. 16. Chen, H., Pan, P.Y., Shao, H.S., Wang, Y.G. & Zhao, Q.X. (2017). Corrosion and viscous ash deposition of a rotary air preheater in a coal-fired power plant. Appl. Thermal Engin. 113, 373–385. DOI: 10.1016/j.applthermaleng.2016.10.160.10.1016/j.applthermaleng.2016.10.160
  17. 17. Bu, Y.F., Wang, L.M., Chen, X., Wei, X.Y., Deng, L. & Che, D.F. (2018). Numerical analysis of ABS deposition and corrosion on a rotary air preheater. Appl. Thermal Engin. 131, 669–677. DOI: 10.1016/j.applthermaleng.2017.11.082.10.1016/j.applthermaleng.2017.11.082
  18. 18. Cheng, M., Chen, Z., Liao, Q., Zhang, J., Ding, Y. & Zhu, X. (2019). Experimental research on the ash deposition characteristics of 3-D finned tube bundle. Appl. Thermal Engin. 153, 556–564. DOI: 10.1016/j.applthermaleng.2019.03.051.10.1016/j.applthermaleng.2019.03.051
  19. 19. Burke, J.M. & Johnson, K.L. (1982). Ammonium sul-fate and bisulfate formation in air preheaters. British Med. J. 329(7463), 446.
  20. 20. Pan, L., Liu, Q.Y. & Zhenyu Liu. (2012). Behaviors of NH4HSO4 in SCR of NO by NH3 over different cokes. Chem. Engin. J. (181–182), 169–173. DOI: 10.1016/j.cej.2011.11.051.10.1016/j.cej.2011.11.051
  21. 21. Menasha, J., Dunn-Rankin, D., Muzio, L. & Stallings, J. (2011). Ammonium bisulfate formation temperature in a bench--scale single-channel air preheater. Fuel. 90, 2445–2453. DOI: 10.1016/j.fuel.2011.03.006.10.1016/j.fuel.2011.03.006
  22. 22. Zhu, Z.P., Niu, H.X., Liu, Z.Y. & Liu, S. (2000). Decomposition and Reactivity of NH4HSO4 on V2O5/AC Catalysts Used for NO Reduction with Ammonia. J. Catal. 195(2), 268–278. DOI: 10.1006/jcat.2000.2961.10.1006/jcat.2000.2961
  23. 23. Shu, H., Zhang, Y.H., Fan, H.M., Zhang, Y.P. & Yang, L. (2015). FT-IR study of formation and decomposition of ammonium bisulfates on surface of SCR catalyst for nitrogen removal. CIESC Journal. 66(11), 4460–4468. DOI: 10.11949/j. jssn.0438-1157.20150450.
  24. 24. Ma, S., Jin, X., Sun, Y. & Cui, J. (2010). The formation mechanism of ammonium bisulfate in SCR flue gas denitrification process and control thereof. THERMAL POWER GENERATION. 39(8),12–17. DOI: 10.3969/j. issn.10022336.4.2010.08.012.
  25. 25. Ma, S., Guo, M., Song, H., Chen, G., Yang, J., Zang, B. & Li, D. (2014). Formation mechanism and influencing factors of ammonium bisulfate during the selective catalytic reduction process. THERMAL POWER GENERATION. 43(2), 75–78, 86. DOI: 10.3969/j.issn.1002-3364.2014.02.075.
  26. 26. Ma, S., Deng, Y., Wu, W. & Zhang, L. (2016). Reaction characteristic of by-product ammonium bisulfate from SCR denitrification and fly ash in air preheater. Chinese J. Environ. Engin. 10(11), 6563–6570. DOI: 10.12030/j.cjee.201507027.
  27. 27. Ma, S., Deng, Y., Wu, W., Tan, Y., Zhang, L., Chai, F., Sun, P. & Zhang, X. (2016). Corrosion Characteristics of Downstream Metal Material of Boiler System in Solution of By-product Ammonium Bisulfate from SCR Dinitrification. J. Chinese Society for Corrosion and Protection. 36(4), 335–342. DOI: 10.11902/1005.4537.2015.155.
  28. 28. Li, J. & Zhang, G. (1992). Investigation of the Kinetics and Mechanism of Decomposition of Ammonium Hydrogen Sulfate. ACTA PHYSICO-CHIMICA SINICA. 8(1), 123–127. DOI: 10.3866/PKU.WHXB19920122.10.3866/PKU.WHXB19920122
  29. 29. Raisaku, K. & Kohei, U. (1970). Mechanism, kinetics, and equilibrium of thermal decomposition of ammonium sulfate. Ind. Eng. Chem. Process Des Develop. 9(4), 489–494.10.1021/i260036a001
  30. 30. Fan, Y. & Cao, F. (2011). Thermal Decomposition Kinetics of Ammonium Sulfate. J. Chem. Engin. Chin. Univ. 25(2), 341–346. DOI: 10.3969/j.issn.1003-9015.2011.02.028.
  31. 31. Tang, H., Li, H., Yang, H., Lin, Z., Zhuang, K., Lu, Q. & Li, W. (2018). Research progress on the formation and decomposition mechanism of ammonium-sulfate salts in NH3--SCR technology. Chem. Ind. Engin. Progress. 37(3), 822–831. DOI: 10.16085/j.issn.1000-6613.2017-0797.
Language: English
Page range: 30 - 38
Published on: Dec 26, 2022
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Kunling Jiao, Shuangchen Ma, Xiangyang Chen, Jiaming Liu, Lin Qiao, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.