Have a personal or library account? Click to login
Adsorption of CO2 by surface modified coal-based activated carbons: kinetic and thermodynamic analysis Cover

Adsorption of CO2 by surface modified coal-based activated carbons: kinetic and thermodynamic analysis

Open Access
|Oct 2022

References

  1. Di Paola, G., A. Rizzo, A.G. Benassai, G. Corrado, F. Matano & P. P. Aucelli (2021). Sea-level rise impact and future scenarios of inundation risk along the coastal plains in Campania (Italy). Environ. Earth Sci. 80 (17), 1–22. DOI: 10.1007/s12665-021-09884-0.
  2. Aihaiti, A., Jiang, Z., Zhu, L., Li, W. & You Q. (2021). Risk changes of compound temperature and precipitation extremes in China under 1.5°C and 2°C global warming. Atmospheric Research 264, 105838. DOI: 10.1016/j.atmosres.2021.105838.
  3. Keeling, C.D., Bacastow, R.B., Bainbridge, A.E., Ekdahl Jr, C.A., Guenther, P.R., Waterman, L.S. & Chin, J.F. (1976). Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. Tellus 28 (6), 538–551. DOI: 10.1111/j.2153-3490.1976.tb00701.x.
  4. Benson, S., Chandler, W., Edmonds, J., Houghton, J., Levine, M., Bates, L., Chum, H., Dooley, J., Grether, D. & Logan, J.(1998). Assessment of basic research needs for greenhouse gas control technologies, Lawrence Berkeley National Lab., Berkeley, CA (US). ISBN: 9780080430188.
  5. Zhang, Y.D. & Zhao, T. (2013). Analysis on emission reduction targets of carbon dioxide in China. Advanced Materials Research, Trans Tech Publ. 734–737, 1891–1895. DOI: 10.4028/www.scientific.net/AMR.734-737.1891.
  6. Krishnaiah, D., Bono, A., Anisuzzaman, S., Joseph C., & Khee T.B. (2014). Carbon dioxide removal by adsorption. J. Appl. Sci. 14 (23), 3142–3148. DOI: 10.3923/jas.2014.3142.3148.
  7. Y Mohd Yazri, M.H. (2013). Development of Ionic Liquid Mixed Matrix Membrane (ILMMM) for Carbon Dioxide Removal. Universiti Teknologi Petronas. http://utpedia.utp.edu.my/id/eprint/8401
  8. Abd, A.A., Naji, S.Z., Hashim, A.S. & Othman, M.R. (2020). Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: a review. J. Environ. Chem. Engin. 8 (5), 104142. DOI: 10.1016/j.jece.2020.104142.
  9. Areán, C.O. & Delgado, M.R. (2010). Variable-temperature FT-IR studies on the thermodynamics of carbon dioxide adsorption on a faujasite-type HY zeolite. Appl. Surf. Sci. 256 (17), 5259–5262. DOI: 10.1016/j.apsusc.2009.12.114.
  10. Ho, M.T., Allinson G.W. & Wiley, D.E. (2008). Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Ind. & Engin. Chem. Res. 47 (14), 4883–4890. DOI: 10.1021/ie070831e.
  11. Lin, R., Zhuang, L., Xu, X. & Chen, S. (2013). Design of a viscose based solid amine fiber: effect of its chemical structure on adsorption properties for carbon dioxide. J. Coll. Inter. Sci. 407, 425–431. DOI: 10.1016/j.jcis.2013.06.029.23859814
  12. Horio, M., Suzuki, K., Mori, T., Inukai, K. & Tomura, S., (1997). Method for separation of nitrogen and carbon dioxide by use of ceramic materials as separating agent, Google Patents.
  13. Mujmule, R.B., Chung, W.J. & Kim, H. (2020). Chemical fixation of carbon dioxide catalyzed via hydroxyl and carboxyl-rich glucose carbonaceous material as a heterogeneous catalyst. Chem. Engin. J. 395, 125164. DOI: 10.1016/j.cej.2020.125164.
  14. Hou, M., Qi, W., Li, L., Xu, R., Xue, J. Zhang, Y., Song, C. & Wang, T. (2021). Carbon molecular sieve membrane with tunable microstructure for CO2 separation: Effect of multiscale structures of polyimide precursors. J. Membr. Sci. 635: 119541. DOI: 10.1016/j.memsci.2021.119541.
  15. Bell, J.G., Be nham, M.J. & Thomas, K.M. (2021). Adsorption of Carbon Dioxide, water vapor, nitrogen, and sulfur dioxide on activated carbon for capture from flue gases: competitive adsorption and selectivity aspects. Energy & Fuels 35(9), 8102-8116. DOI: 10.1021/acs.energyfuels.1c00339.
  16. Yenisoy-Karakaş, S., Aygün, A., Güneş, M. & Tahtasakal, E. (2004). Physical and chemical characteristics of polymer-based spherical activated carbon and its ability to adsorb organics. Carbon 42 (3), 477–484. DOI: 10.1016/j.carbon.2003.11.019.
  17. Ma, R., Qin, X., Liu, Z., & Fu, Y. (2019). Adsorption property, kinetic and equilibrium studies of activated carbon fiber prepared from liquefied wood by ZnCl2 activation. Materials 12 (9), 1377. DOI: 10.3390/ma12091377.653934231035339
  18. Ramírez, A., Sierra, L., Mesa, M. & Restrepo, J. (2005). Simulation of nitrogen a dsorption–desorption isotherms. Hysteresis as an effect of pore connectivity. Chem. Engin. Sci. 60 (17), 4702–4708. DOI: 10.1016/j.ces.2005.03.004.
  19. Voigt, W. (1993). Calculation of salt activities in molten salt hydrates applying the modified BET equation, I: Binary systems. Monatshefte für Chemie/Chemical Monthly 124 (8), 839–848. DOI: 10.1007/bf00816406
  20. Nunes, C.A. & Guerreiro, M.C. (2011). Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers. Química Nova 34, 472–476. DOI: 10.1590/S0100-40422011000300020.
  21. Lawrence, N.S. & Wang, J. (2006). Chemical adsorption of phenothiazine dyes onto carbon nanotubes: Toward the low potential detection of NADH. Electrochem. Commun. 8 (1), 71–76. DOI: 10.1016/j.elecom.2005.10.026.
  22. Rozanov, L. (20 21). Kinetic equations of non-localized physical adsorption in vacuum for Freundlich adsorption isotherm. Vacuum 189, 110267. DOI: 10.1016/j.vacuum.2021.110267.
  23. Azuara, E., Cortes, R., Garcia, H.S. & Beristain, C.I. (1992). Kinetic model for osmotic dehydration and its relation-ship with Fick's second law. Inter. J. Food Sci. & Technol. 27 (4), 409–418. DOI: 10.1111/j.1365-2621.1992.tb01206.x.
  24. Crich, D., Jiao, X.Y., Yao, Q. & Harwood, J.S. (1996). Radical Clock Reactions under Pseudo-First-Order Conditions Using Catalytic Quantities of Diphenyl Diselenide. A 77Seand 119Sn-NMR Study of the Reaction of Tributylstannane and Diphenyl Diselenide. J. Organic Chem. 61 (7), 2368–2373. DOI: 10.1021/jo950857s.
  25. Ho, Y.S. & Ofomaja, A.E. (2006). Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. J. Hazard. Mater. 129(1–3), 137–142. DOI: 10.1016/j.jhazmat.2005.08.020.
  26. Moon, H. & Lee W.K. (1983). Intraparticle diffusion in liquid-phase adsorption of phenols with activated carbon in finite batch adsorber. J. Coll. Interf. Sci. 96 (1), 162–171. DOI: 10.1016/0021-9797(83)90018-8.
  27. Xiong, F., Hwang, B., Jiang, Z., James, D., Lu, H. & Moortgat, J. (2021). Kinetic emission of shale gas in saline water: Insights from experimental observation of gas shale in canister desorption testing. Fuel 300, 121006. DOI: 10.1016/j.fuel.2021.121006.
  28. Qin, C., Jiang, Y., Zuo, S., Chen, S., Xiao, S., & Liu, Z. (2021). Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2. Energy 236, 121410. DOI: 10.1016/j.energy.2021.121410.
  29. Shen, D., Bülow, M., Siperstein, F., Engelhard, M. & Myers, A.L. (2000). Comparison of experimental techniques for measuring isosteric heat of adsorption. Adsorption 6 (4), 275–286. DOI: 10.1023/A:1026551213604.
  30. Fung, V., Hu, G., Ganesh, P. & Sumpter, B.G. (2021). Machine learned features from density of states for accurate adsorption energy prediction. Nature Commun. 12 (1), 1–11. DOI: 10.1038/s41467-020-20342-6.778257933398014
  31. Qiu, J., Wang, Y., Wu, P., Jiang, S., Cui, K., Chen, G., Liu, D. & Cui, G. (2021). Adsorption characteristics of hexadecyl ammonium with different numbers of carbon chains in montmorillonite and the structure of the prepared composites. J. Porous Mat. 28 (6), 1675–1687. DOI: 10.1007/s10934-021-01114-z.
  32. Jin, C., Sun, J., Chen, Y., Guo, Y., Han, D., Wang, R. & Zhao, C. (2021). Sawdust wastes-derived porous carbons for CO2 adsorption. Part 1. Optimization preparation via orthogonal experiment. Separation and Purification Technology 276, 119270. DOI: 10.1016/j.seppur.2021.119270.
  33. Jiao, J., Cao, J., Xia, Y. & Zhao, L. (2016). Improvement of adsorbent materials for CO2 capture by amine functionalized mesoporous silica with worm-hole framework structure. Chem. Engin. J. 306, 9–16. DOI: 10.1016/j.cej.2016.07.041.
  34. Jia, J., Wang, Y., Feng, Y., Hu, G., Lin, J., Huang, Y., Zhang, Y., Liu, Z., Tang, C. & Yu, C., (2021). Hierarchically porous boron nitride/HKUST-1 hybrid materials: synthesis, CO2 adsorption capacity, and CO2/N2 and CO2/CH4 selectivity. Ind. & Engin. Chem. Res. 60 (6), 2463–2471. DOI: 10.1021/acs.iecr.0c05701.
  35. Pham, T.H., Lee, B.K. & Kim, J. (2016). Novel improvement of CO2 adsorption capacity and selectivity by ethylenediamine-modified nano zeolite. J. Taiwan Inst. Chem. Engin. 66, 239–248. DOI: 10.1016/j.jtice.2016.06.030.
  36. Lee, S.Y. & Park, S.J. (2013). Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. J. Col. Int. Sci. 389 (1), 230–235. DOI: 10.1016/j.jcis.2012.09.018.23046640
Language: English
Page range: 19 - 28
Published on: Oct 16, 2022
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Liu Xinzhe, Zhang Mingyang, Chen Juan, Hu Zhengyu, Xian Shuaifei, Tang Mingxuan, Zhang Chenchen, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.