Have a personal or library account? Click to login
Study on synthesis and photoelectric properties of AgInS2 quantum dots Cover

Study on synthesis and photoelectric properties of AgInS2 quantum dots

Open Access
|Jul 2022

References

  1. 1. Fan, X., Yu, S., Hou, B. & Kim, J.M. (2019). Quantum dots based photocatalytic hydrogen evolution. Isr. J. Chem. 59, 762–773. DOI: 10.1002/ijch.201900029.
  2. 2. Farzin, M.A. & Abdoos, H. (2021). A critical review on quantum dots: From synthesis toward applications in electro-chemical biosensors for determination of disease-related biomolecules. Talanta. 224, 121828. DOI: 10.1016/j.talanta.2020.121828.33379046
  3. 3. Caputo, J.A., Frenette, L.C., Zhao, N., Sowers, K.L., Krauss, T.D. & Weix, D.J. (2017). General and efficient C-C bond forming photoredox catalysis with semiconductor quantum dots. J. Am. Chem. Soc. 139(12), 4250–4253. DOI: 10.1021/jacs.6b13379.28282120
  4. 4. Bratskaya, S., Sergeeva, K., Konovalova, M., Modin, E., Svirshchevskaya, E., Sergeev, A., Aleksandr, M. & Alexandr, P. (2019). Ligand-assisted synthesis and cytotoxicity of ZnSe quantum dots stabilized by N-(2-carboxyethyl) chitosans. Colloids Surf. B. 182, 110342. DOI: 10.1016/j.colsurfb.2019.06.071.31299538
  5. 5. Ranjbar-Navazi, Z., Omidi, Y., Eskandani, M. & Davaran, S. (2019). Cadmium-free quantum dot-based theranostics. TrAC Trends Anal. Chem. 118, 386–400. DOI: 10.1016/j. trac.2019.05.041.
  6. 6. Asha, K., Arun, S., Rahul, S., Udayabanu, M. & Ragini, R.S. (2021). Biocompatible and fluorescent water based NIR emitting CdTe quantum dot probes for biomedical applications. Spectrochimica Acta A. 248, 119206. DOI: 10.1016/j. saa.2020.119206.
  7. 7. W. William, Y., Qu, L., Guo, W. & Peng, X. (2003). Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860. DOI: 10.1021/cm034081k.
  8. 8. Maksim, M., Vera, K., Anton, T., Sergei, C., Anastasiia, S., Viktoria, O., Yulia, G., Mikhail, B., Anatoly F, Yurii, G. & Alexander, B. (2020). FRET-based analysis of AgInS2/ZnAgInS/ZnS quantum dot recombination dynamics. Nanomaterials. 10, 2455. DOI: 10.3390/nano10122455.776328733302496
  9. 9. Ma, W., Zhang, Z., Ma, M., Liu, Y., Pan, G., Gao, H. & Mao, Y. (2020). CuGaS2 quantum dots with controlled surface defects as an hole-transport material for high-efficient and stable perovskite solar cells. Sol. Energy. 211, 55–61. DOI: 10.1016/j.solener.2020.09.058.
  10. 10. Chevallier, T., Benayad, A., Le Blevennec, G. & Chandezon, F. (2017). Method to determine radiative and non-radiative defects applied to AgInS2-ZnS luminescent nanocrystals. Phys. Chem. Chem. Phys. 19, 2359–2363. DOI: 10.1039/C6CP06509K.
  11. 11. Song, S., Liang, Z., Fu, W. & Peng, T. (2017). Preparation of single-crystalline AgIn5S8 octahedrons with exposed {111} facets and its visible-light-responsive photocatalytic H2 production activity. ACS Appl. Mater. Interfaces. 9, 17013–17023. DOI: 10.1021/acsami.7b01741.28481081
  12. 12. Sousa, F.L., Freitas, D., Silva, S. & Robério, R. (2020). Tunable emission of AgIn5S8 and ZnAgIn5S8 nanocrystals: electrosynthesis, characterization and optical application. Mater. Today Chem. 16, 100238. DOI: 10.1016/j.mtchem.2019.100238.
  13. 13. Torimo to, T., Adachi, T. & Okazaki, K. et al. (2007). Facile synthesis of ZnS− AgInS2 solid solution nanoparticles for a color-adjustable luminophore. J. Am. Chem. Soc. 129(41), 12388–12389. DOI: 10.1021/ja0750470.17887678
  14. 14. Tang, X., Ho, W.B.A. & Xue, J.M. (2012). Synthesis of Zn-doped AgInS2 nanocrystals and their fluorescence properties. J. Phys. Chem. C. 116(17), 9769–9773. DOI: 10.1021/jp207711p.
  15. 15. Luo, Z., Zhang, H. & Huang, J. et al. (2012). One-step synthesis of water-soluble AgInS2 and ZnS–AgInS2 composite nanocrystals and their photocatalytic activities. J. Colloid Interface Sci. 377(1), 27–33. DOI: 10.1016/j.jcis.2012.03.074.22542007
  16. 16. Kameyama, T., Takahashi, T. & Machida, T., et al. (2015). Controlling the electronic energy structure of ZnS–AgInS2 solid solution nanocrystals for photoluminescence and photocatalytic hydrogen evolution. J. Phys. Chem. C. 119(44), 24740–24749. DOI: 10.1021/acs.jpcc.5b07994.
  17. 17. Lan, C.W., Meng, L. & Xu, N. (2022). One-pot synthesis of the direct Z-scheme AgInS2/AgIn5S8 QDs heterojunction for efficient photocatalytic reduction of Cr6+ in neutral condition. Colloid. Surface. A. 632, 127762. DOI: 10.1016/j.colsurfa.2021.127762.
  18. 18. Kurshanov, D.A., Gromova, Y.A., Cherevkov, S.A., Ushakova, E.V., Kormilina, T.K., Dubavik, A., Fedorov, A.V. & Baranov, A.V. (2018). Non-toxic ternary quantum dots AgInS2 and AgInS2/ZnS: synthesis and optical properties. Opt. Spectros. 125, 1041–1046. DOI: 10.1134/S0030400X1812010X.
  19. 19. Wang, X., Dai, W., Li, X., Chen, Z., Zheng, Z., Chen, Z., Zhang, G., Xiong, L. & Duo, S. (2020). Effects of L-cysteine on the photoluminescence, electronic and cytotoxicity properties of ZnS:O quantum dots. J. Alloys Compd. 825, 154052. DOI: 10.1016/j.jallcom.2020.154052.
  20. 20. Esteves, M., Mombrú, D., Romero, M., Fernández-Werner, L., Faccio, R. & Mombr, A.W. (2021) Insights on the structural and electrical transport of sodium titanate nanotubes decorated with CuInS2 quantum dots heterostructures. Appl. Surf. Sci. 535, 147733. DOI: 10.1016/j.apsusc.2020.147733.
Language: English
Page range: 21 - 26
Published on: Jul 20, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Binxia Yuan, Zige Luo, Yongjun Sun, Sheng Cao, Lan Cao, Min Li, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.