Have a personal or library account? Click to login
Retrofitting Heat Exchanger Network of Industrial Ethylene Glycol Plant using Heat Integration based on Pinch Analysis Cover

Retrofitting Heat Exchanger Network of Industrial Ethylene Glycol Plant using Heat Integration based on Pinch Analysis

Open Access
|Jul 2022

References

  1. 1. Dye, R.F. (2001). Ethylene Glycol Technology. Korean J. Chem. Engin.18, 571–579. DOI: 10.1007/BF02706370.
  2. 2. Nimkar, S. & Mewada, R. (2016). Effect of catalyst selectivity on exergetic and exergoeconomic evaluation of ethylene oxide/ethylene glycol process. Int. J. Exergy, 21(2), 157–185. DOI: 10.1504/IJEX.2016.078924.
  3. 3. Kawabe, K. (2010). Development of Highly Selective Process for Mono-Ethylene Glycol Production from Ethylene Oxide via Ethylene Carbonate Using Phosphonium Salt Catalyst, Catal Surv Asia 14, 111–115. DOI:10.1007/s10563-010-9094-4.
  4. 4. Yue, H., Zhao, Y., Ma, X. & Gong, J. (2012). Ethylene glycol: properties, synthesis, and applications. Chem. Soc. Rev., 41, 4218–4244. DOI: 10.1039/C2CS15359A.
  5. 5. Wang, F., Zhao, Y., Yang, O., Cai, J. & Deng, M. (2013). Process safety data management program based on HAZOP analysis and its application to an ethylene oxide/ethylene glycol plant. J. Loss Prevent. Process Ind., 26, 1399–1406. DOI: 10.1016/j.jlp.2013.08.020.
  6. 6. Huber, G.,W., Iborra, S. & Corma, A.J. (2006). Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev., 106, 4044–4098. DOI: 10.1021/cr068360d.
  7. 7. Serov, A. & Kwak, C.J. (2010). Recent achievements in direct ethylene glycol fuel cells (DEGFC), Appl. Catal. B-Environ. 97, 1–12. DOI: 10.1016/j.apcatb.2010.04.011.
  8. 8. Bianchini, C. & Shen, P.K. (2009). Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells. Chem. Rev., 109, 4183–4206. DOI: 10.1021/cr9000995.
  9. 9. Staples, C.A., Williams, J.B., Craig, G.R. & Roberts, K.M. (2001). Fate, effects and potential environmental risks of ethylene glycol: a review. Chemosphere, 43, 377–383. DOI: 10.1016/S0045-6535(00)00148-X.
  10. 10. Yang, Q., Zhang, D., Zhou, H. & Zhang, C.J. (2018). Process simulation, analysis and optimization of a coal to ethylene glycol process. Energy. 155, 521–534. DOI: 10.1016/j.energy.2018.04.153.
  11. 11. Van, Hal, J.W., Ledford, J.S. & Zhang, X.J. (2007). Investigation of three types of catalysts for the hydration of ethylene oxide (EO) to mono ethylene glycol (MEG). Catalysis Today, 123, 310–315. DOI:10.1016/j.cattod.2007.02.015.
  12. 12. Zhu, F., Huang, K., Wang, S., Shan, L. & Zhu, Q. (2009). Towards further internal heat integration in design of reactive distillation columns—Part IV: Application to a high-purity ethylene glycol reactive distillation column. Chem. Eng. Sci. 64, 3498–3509. DOI: DOI:10.1016/j.ces.2009.04.031.
  13. 13. Gundersen, T. & Naess, L. (1988). The synthesis of cost optimal heat exchanger networks: An industrial review of the state of the art. Comp. Chem. Engin. 12(6), 503–530. DOI: 10.1016/0098-1354(88)87002-9.
  14. 14. Yoon, S-G., Lee, J. & Park, S., (2007). Heat integration analysis for an industrial ethylbenzene plant using pinch analysis. Appl. Thermal Engin., 27, 886–893. DOI: 10.1016/j. applthermaleng.2006.09.001.
  15. 15. Ali, E. & Hadj-Kali, M. (2018). Energy Efficiency Analysis of Styrene Production by Adiabatic Ethylbenzene Dehydrogenation Using Exergy Analysis and Heat Integration, Polish J. Chem. Technol., 20(1), 35–40. DOI: 10.2478/pjct-2018-0006.
  16. 16. Warumporn, P. & Kitipat, S. (2013). Process Heat Integration between Distillation Columns for Ethylene Hydration Process. Chem. Engin. Transactions, 35, 181–186. DOI: 10.3303/CET1335030.
  17. 17. Feng, X., Pu, J., Yang, J. & Chu, K.H. (2011). Energy recovery in petrochemical complexes through heat integration retrofit analysis. Appl. Energy, 88, 1965–1982. DOI: 10.1016/j. apenergy.2010.12.02.
  18. 18. Liang, C. & Feng, X. (2011). Heat Integration of a Continuous Reforming Process. Chem. Engin. Transaction, 25, 213–218. DOI: 10.3303/CET11250367.
  19. 19. Piacentino, A.J. (2011). Thermal analysis and new insights to support decision making in retrofit and relaxation of heat exchanger networks. Appl. Thermal Engin., 31, 3479–3499. DOI: 10.1016/j.applthermaleng.2011.07.002.
  20. 20. Knopf, F.C. (2012). Modeling, Analysis and Optimization of Process and Energy Systems, Wiley, New Jersey, USA.10.1002/9781118121160
  21. 21. Hanyak, M.E. (2011). Companion in Chemical Engineering: An Instructional Supplement, CreateSpace Independent Publishing Platform, USA.
  22. 22. Smith, J.M., Van, Ness, H.C. & Abbott, M.M. (2005). Introduction to Chemical Engineering Thermodynamics. McGraw-Hill, Boston, USA.
  23. 23. Shenoy, U.V. (1995). Heat Exchange Network Synthesis: Process Optimization by Energy and Resource Analysis. Gulf Publ. Co., Houston, TX.
  24. 24. Linnhoff, B. (1993). Pinch analysis- A state of the art overview. Trans. Inst. Chem. Eng. Chem. Eng. Res. Des. 71, Part A5, 503–522. GB-93-053046; EDB-93-157424.
  25. 25. Douglas, J.M. (1988). Conceptual Design of Chemical Processes, McGraw Hill, New York. USA.
  26. 26. El-Halwagi, M.M. (2012). Sustainable Design Through Process Integration, 1st Ed., Butterworth-Heinemann, USA.
  27. 27. Klemes, J. (2013). Handbook of Process Integration (PI), Woodhead Publishing, Cambridge, UK.10.1533/9780857097255
  28. 28. Robin, S. (2005). Chemical Process Design and Integration, McGraw-Hill, New Jersey, USA.
  29. 29. Kemp, I. (2007). Pinch analysis and Process Integration, Elsevier, USA.
  30. 30. Dimian, A.C. (2003). Chapter 10 Pinch point analysis, Computer Aided Chem. Engin.13, 393–434. DOI: 10.1016/S1570-7946(03)80034-2.
Language: English
Page range: 8 - 20
Published on: Jul 20, 2022
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Emad Ali, Irfan Wazeer, Abdulaziz Almutlaq, Jagan Rallapalli, Mohamed K. Hadj-Kali, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.