Have a personal or library account? Click to login
Molecular docking, theoretical calculations, synthesis of Ru(III), Pd(II) and VO(II) complexes and activity determination as antibacterial and antioxidant Cover

Molecular docking, theoretical calculations, synthesis of Ru(III), Pd(II) and VO(II) complexes and activity determination as antibacterial and antioxidant

Open Access
|Apr 2022

References

  1. 1. Yaul, A.R., Dhande, V.V., Pethe, G.B. & Aswar, A.S. (2014). Synthesis, characterization, biological and electrical conductivity studies of some Schiff base metal complexes. Bull. Chem. Soc. Ethiop. 28, 255. DOI: 10.4314/bcse.v28i2.9.10.4314/bcse.v28i2.9
  2. 2. Shelke, V.A., Jadhav, S.M., Shankarwar, S.G., Munde, A.S. & Chondhekar, T.K. (2011). Synthesis, characterization, antibacterial and antifungal studies of some transition and rare earth metal complexes of N-benzylidene-2-hydroxybenzohydrazide. Bull. Chem. Soc. Ethiop. 25, 381. DOI: 10.4314/bcse.v25i3.68590.10.4314/bcse.v25i3.68590
  3. 3. Altntop, M.D., Özdemir, A., Turan-Zitouni, G., Ilgin, S., Atli, Ö., Işcan, G. & Kaplancikli, Z.A. (2012). Synthesis and biological evaluation of some hydrazone derivatives as new anticandidal and anticancer agents. Eur. J. Med. Chem. 58, 299. DOI: 10.1016/j.ejmech.2012.10.011.10.1016/j.ejmech.2012.10.01123142671
  4. 4. Xu, J., Zhou, T., Xu, Z., Gu, X., Wu, W., Chen, H., Wang, Y., Wang, L. Zhu, T. & Chen, R.H. (2017). Synthesis, crystal structures and antitumor activities of copper(II) complexes with a 2-acetylpyrazine isonicotinoyl hydrazone ligand. J. Mol. Struct. 1128, 448. DOI: 10.1016/j.molstruc.2016.09.016.10.1016/j.molstruc.2016.09.016
  5. 5. Netalkar, P.P., Netalkar, S.P., Budagumpi, S. & Revankar. V.K. (2014). Synthesis, crystal structures and characterization of late first row transition metal complexes derived from benzothiazole core: Anti-tuberculosis activity and special emphasis on DNA binding and cleavage property. Eur. J. Med. Chem. 2014, 79, 47. DOI: 10.1016/j.ejmech.2014.03.083.10.1016/j.ejmech.2014.03.08324721314
  6. 6. Gökçe, M., Utku, S. & Küpeli, E. (2009). Synthesis and analgesic and anti-inflammatory activities 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(p-substituted/nonsubstituted benzal) hydrazine derivatives. Eur. J. Med. Chem. 44, 3760. DOI: 10.1016/j.ejmech.2009.04.048.10.1016/j.ejmech.2009.04.04819535179
  7. 7. Kaushik, D., Khan, S.A., Chawla, G. & Kumar, S. (2010). N’-[(5-chloro-3-methyl-1-phenyl-Hpyrazol- 4-yl)methylene] 2/4-substituted hydrazides: Synthesis and anticonvulsant activity. Eur. J. Med. Chem. 45, 3943. DOI: 10.1016/j.ejmech.2010.05.049.10.1016/j.ejmech.2010.05.04920573423
  8. 8. Bolos, C.A., Nikolov, G.S., Ekateriniadour, L., Kortsaris, A. & Kyriakidis, D.A. (1998). Structure- Activity Relationships for Some Diamine, Triamine and Schiff Base Derivatives and their Copper(II) Complexes. Metal Based Drugs. 5, 323.10.1155/MBD.1998.323236514518475868
  9. 9. Osowole, A.A. & Festus, C. (2013). Synthesis, characterisation and antibacterial activities of some metal(II) complexes of 3-(-1-(2-pyrimidinylimino)methyl -2-napthol. Elixir Appl. Chem. 59, 15843.10.9734/IRJPAC/2014/1540
  10. 10. Sharma, N.K., Ameta, R.K. & Singh, M. (2016). Biological Impact of Pd (II) Complexes: Synthesis, Spectral Characterization, In Vitro Anticancer, CT-DNA Binding, and Antioxidant Activities. Inter. J. Med. Chem. ID 9245619. DOI: 10.1155/2016/9245619.10.1155/2016/9245619477190326989511
  11. 11. Shakdofa, M.E., Al-Hakimi, A.N., Elsaied, F.A., Alasbahi, S.O. & Alkwlini, A.M., (2017). Synthesis, Characterization and bioactivity Zn2+, Cu2+, Ni2+, Co2+, Mn2+, Fe3+, Ru3+, VO2+ and UO2 2+ complexes of 2-Hydroxy-5-((4-nitrophenyl) diazenyl) Benzylidene)-2-(p-tolylamino)acetohydrazide. Bull. Chem. Soc. Ethiop, 31, 75. DOI: 10.4314/bcse.v31i1.7.10.4314/bcse.v31i1.7
  12. 12. Al-Hazm, G.A., Abou-Melha, K.S., Althagafi, I., El-Metwaly, N., Shaaban, F., Abdul Galil, M.S., Mansour, S., Abdul Galil, A. & El-Bindar, A. (2020).Synthesis and structural characterization of oxovanadium(IV) complexes of dimedone derivatives. Appl. Organomet. Chem., 34, e5672. DOI: 10.1002/aoc.5672.10.1002/aoc.5672
  13. 13. El-Gammal, O.A., Mohamed, F.Sh., Rezk, G.N. & El--Bindar, A. (2021). Synthesis, characterization, catalytic, DNA binding and antibacterial activities of Co(II), Ni(II) and Cu(II) complexes with new Schiff base ligand. Mol. Liq. 326, 115223. DOI: https://doi.org/10.1016/j.molliq.2020.115223.10.1016/j.molliq.2020.115223
  14. 14. El-Saied, F.A., Salem, T.A., Aly, S.A. & Shakdofa, M.M.E. (2017) Evaluation of hyperglycemic effect of synthetic Schiff base vanadium(IV) complexes. Pharm. Chem. J. 51, 833. DOI: 10.1007/s11094-017-1702-4.10.1007/s11094-017-1702-4
  15. 15. Bassett, J., Denney, R.C., Jeffery, G.H. & Mendham, J. Vogel’s Textbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, 4th edition, Longman Group, London. 1978, 316.
  16. 16. Monteiro, N.K. & Firme, C.L. (2015). Teaching Thermodynamic, Geometric and Electronic Aspects of Diels-Alder Cycloadditions by Using Computational Chemistry – An Undergraduate Experiment. World J. Chem. Educat. 3, 141. DOI: 10.12691/wjce-3-6-3.
  17. 17. Hay, P.J. & Wadt, W.R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 270. DOI: 10.1063/1.448975.10.1063/1.448975
  18. 18. Dennington, R., Keith, T. & Millam, J. Gauss view version 5, Semichem Inc. 2009.
  19. 19. Ismael, M., Abdel-Mawgoud, A.A.M., Rabia, M.K. & Abdou, A. (2021). Ni(II) mixed-ligand chelates based on 2-hydroxy-1-naphthaldehyde as antimicrobial agents: Synthesis, characterization, and molecular modeling. J. Mol. Liq. 330, 115611. DOI: 10.1016/j.molliq.2021.115611.10.1016/j.molliq.2021.115611
  20. 20. Aly, S.A. & Fathalla, S.K. (2020). Preparation, characterization of some transition metal complexes of hydrazone derivatives and their antibacterial and antioxidant activities. Arbian J. Chem. 13, 3735. DOI: 10.1016/j.arabjc.2019.12.003.10.1016/j.arabjc.2019.12.003
  21. 21. Blois, M.S. (1958). Antioxidant determinations by the use of a stable Free radical. Nature. 181, 1199. DOI: 10.1038/1811199a0.10.1038/1811199a0
  22. 22. Glucin, I. (2006). Antioxidant and antiradical activities of L-carnitineX. Life Sci. 78(8), 803. DOI: 10.1016/j.lfs.2005.05.103.10.1016/j.lfs.2005.05.10316253281
  23. 23. Glucin, I. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicol. 217, 213. DOI: 10.1016/j.tox.2005.09.011.10.1016/j.tox.2005.09.01116243424
  24. 24. Ak, T. & Glucin, I. (2008). Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 174, 27. DOI: 10.1016/j.cbi.2008.05.003.10.1016/j.cbi.2008.05.00318547552
  25. 25. Geary, W.J., (1971). The Use of Conductivity Measurements in Organic Solvents for the Characterisation of Coordination Compounds. Coord. Chem. Rev. 7, 81–122. DOI: 10.1016/S0010-8545(00)80009-0.10.1016/S0010-8545(00)80009-0
  26. 26. Dhanaraj, C.J. & Johnson, J. (2017). DNA interaction, antioxidant and in vitro cytotoxic activities of some mononuclear metal(II) complexes of a bishydrazone ligand. Mater. Sci. Eng. C. 78, 1006. DOI: 10.1016/j.msec.2017.04.152.10.1016/j.msec.2017.04.15228575934
  27. 27. Al-Ashqer, S., Abou-Melha, K.S., Al-Hazmi, G.A., Saad, F.A. & El-Metwaly, N.M. (2014). Spectral studies on a series of metal ion complexes derived from pyrimidine nucleus, TEM, biological and γ-irradiation effect. Spectrochim. Acta, Part A. 132, 751. DOI: 10.1016/j.saa.2014.05.084.10.1016/j.saa.2014.05.08424956491
  28. 28. Aly, S.A. (2017). Spectrochemical study the effect of high energetic ionization radiation on Ru(III), Pd(II) and Hg(II) complexes. J. Radiat. Res. Appl. Sci. 10, 89. DOI: 10.1016/j. jrras.2016.12.001.10.1016/j.jrras.2016.12.001
  29. 29. El-Boraey, H.A. & Serag El-Din, A.A. (2014). Transition metal complexes of a new 15-membered [N5] pentaazamacrocyclic ligand with their spectral and anticancer studies. Spectrochim. Acta A. 132, 663. DOI: 10.1016/j.saa.2014.05.018.10.1016/j.saa.2014.05.01824892547
  30. 30. Venkatachalam, G. & Ramesh, R. (2006). Ruthenium(III) bis-bidentate Schiff base complexes mediated transfer hydrogenation of imines. Inorg. Chem. Commun, 9, 703. DOI: 10.1016/j.inoche.2006.04.012.10.1016/j.inoche.2006.04.012
  31. 31. El-Boraey, H.A. (2012). Coordination behavior of tetraaza [N4] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: Synthesis, spectroscopic characterization and anticancer activity. Spectrochim. Acta A, 97, 255. DOI: 10.1016/j.saa.2012.05.077.10.1016/j.saa.2012.05.07722765944
  32. 32. Geeta, B., Shravankumar, K., Muralidhar, P., Ravikrishna, E.E. Sarangapani, E., Krishna, K. & Ravinder, V. (2010). Binuclear cobalt(II), nickel(II), copper(II) and palladium(II) complexes of a new Schiff-base as ligand: synthesis, structural characterization, and antibacterial activity. Spectrochim. Acta A, 77, 911. DOI: 10.1016/j.saa.2010.08.004.10.1016/j.saa.2010.08.00420801709
  33. 33. Al-Ahmary, K.M., Soliman, S.M., Mekheimer, R.A., Habeeb, M.M. & Alenezi, M.S. (2017). Synthesis, spectral studies and DFT computational analysis of hydrogen bonded-charge transfer complex between chloranilic acid with 2,4-diamino--quinoline-3-carbonitrile in different polar solvents. J. Mol. Liq., 231, 602.10.1016/j.molliq.2017.02.038
  34. 34. Ismael, M., Abdel-Mawgoud, A.M., Rabia, M.K. & Abdou, A. (2021). Synthesis, characterization, molecular modeling and preliminary biochemical evaluation of new copper(II) mixed-ligand complexes. J. Mol. Str., 1227, 129695.10.1016/j.molstruc.2020.129695
  35. 35. Prasad, K.S., Kumar, L.S., Revanasiddappa, H.D., Vijay, B. & Jayalakshmi, B. (2011). Oxovanadium Complexes with Bidentate N, O Ligands: Synthesis, Characterization, DNA Binding, Nuclease Activity and Antimicrobial Studies Chem. Sci. J., 28, 2011. https://astonjournals.Com/csj.10.4172/2150-3494.1000010
  36. 36. El-Boraey, H.A., El-Salamony, M.A. & Hathout, A.A. (2016). Macrocyclic [N5] transition metal complexes: synthesis, characterization and biological activities. J. Incl. Phenom. Macrocycl. Chem., 86, 153. DOI: 10.1007/s108047-016-0649-510.1007/s10847-016-0649-5
  37. 37. El-Boraey, H.A. & El-Salamony, M.A. (2019). Transition Metal Complexes with Polydentate Ligand: Synthesis, Characterization, 3D Molecular Modelling, Anticancer, Antioxidant and Antibacterial Evaluation. J. Inorg.Organomet. Poly. Mat. 29, 684. DOI: 10.1007/s10904-018-1042-110.1007/s10904-018-1042-1
  38. 38. Lang, P.T., Moustakas, D., Brozell, S., Carrascal, N., Mukherjee, S., Pegg, S., Raha, K., Shivakumar, D. & Rizzo, R. (2015). D.J.T.O.U.D.W.-S.F. Case, DOCK 6.0 Users Manual.
  39. 39. Strushkevich, N., Usanov, S.A. & Park, H.W. (2010). Structural Basis of Human CYP51 Inhibition by Antifungal Azoles. J. Mol. Biology, 397, 1067. DOI: 10.1016/j.jmb.2010.01.075.10.1016/j.jmb.2010.01.07520149798
  40. 40. Sebastian, S., Schreiber, S., Haupt, V., Adasme, M. and Schroeder, M. (2015). PLIP: fully automated protein–ligand interaction profiler Nucleic Acids Research, 43, W443. DOI: 10.1093/nar/gkv315.10.1093/nar/gkv315448924925873628
  41. 41. Balachandran, C., Kumar, P.S., Arun, Y., Duraipandiyan, V., Sundaram, R.L., Vijayakumar, A., Balakrishna, K., Ignacimuthu, S., Al-Dhabi, N. & Perumal, P.T. (2015). Antimicrobial, antioxidant, cytotoxic and molecular docking properties of N--benzyl-2,2,2-trifluoroacetamide. Appl. Nanosc., 5, 207. DOI: 10.1007/s13204-014-0307-4.10.1007/s13204-014-0307-4
  42. 42. Koleva, I.I., Beek, T.V., Linssen, J.P., De Groot, A. & Evstatieva, L.N.(2002). Screening of Plant Extracts for Antioxidant Activity: a Comparative Study on Three Testing Methods. Phytochem. Anal., 13, 8. DOI: 10.1002/pca.611.10.1002/pca.61111899609
  43. 43. Alici, E.H., Gunsel, A., Akin, M., Bilibicli, A.T., Arabaci, G. & Yarasir, M.N. (2018). Synthesis, characterization, antioxidant and antibacterial properties of non-peripherally and peripherally tetra-substituted phthalocyanines J. Coord. Chem. 71, 3077. DOI: 10.1080/00958972.2018.1511778.10.1080/00958972.2018.1511778
Language: English
Page range: 29 - 38
Published on: Apr 13, 2022
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Samar A. Aly, Nashwa M.H. Rizk, Ayman Eldourghamy, Safinaz Farfour, Mohamed Ismael, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.