Have a personal or library account? Click to login
An analytical model for wicking in porous media based on statistical geometry theory Cover

An analytical model for wicking in porous media based on statistical geometry theory

Open Access
|Apr 2022

References

  1. 1. Liu, M., Wu, J. & Gan, Y. (2018). Tuning capillary penetration in porous media: Combining geometrical and evaporation effects. Int. J. Heat Mass Tran. 123, 239–250. DOI: 10.1016/j. ijheatmasstransfer.2018.02.101.10.1016/j.ijheatmasstransfer.2018.02.101
  2. 2. Wang, Y., Li, Y. & Zheng, H. (2019). Equilibrium, kinetic and thermodynamic studies on methylene blue adsorption by Trichosanthes kirilowii Maxim shell activated carbon. Pol. J. Chem. Technol. 21(4), 89–97. DOI: 10.2478/pjct-2019-0044.10.2478/pjct-2019-0044
  3. 3. Yin, X., Ma, Y. & Wang, X. (2021). Increasing Effect of Water Clarifiers on the Treatment of Polymer-Containing Oil Production Sewage. Pol. J. Chem. Technol. 23(2), 20–26. DOI: 10.2478/PJCT-2021-0012.10.2478/pjct-2021-0012
  4. 4. Sönmez, S. & Arslan, S. (2021). Investigation of the effects on ink colour of lacquer coating applied to the printed substrate in the electrophotographic printing system. Pol. J. Chem. Technol. 23(2), 35–40. DOI: 10.2478/pjct-2021-0014.10.2478/pjct-2021-0014
  5. 5. Singh, K., Jung, M. & Brinkmann, M. (2019). Capillary-Dominated Fluid Displacement in Porous Media. Annu. Rev. Fluid Mech. 51, 429–449. DOI: 10.1146/annurev-fluid-010518-040342.10.1146/annurev-fluid-010518-040342
  6. 6. Washburn, W. (1921). The Dynamics of Capillary Flow. Physical Review, 17(3), 273–283.10.1103/PhysRev.17.273
  7. 7. Li, X., Xian, F. & Alexand, R. (2013). An experimental study on dynamic pore wettability. Chem. Eng. Sci. 104, 988–997. DOI: 10.1016/j.ces. 2013.10.026 .10.1016/j.ces.2013.10.026
  8. 8. Ramírez-Flores, J.C. & Bachmann, J. (2013) Analyzing capillary-rise method settings for contact-angle determination of granular media. J. Plant. Nutr. Soil. Sci. 176, 19–26. DOI: 10.1002/jpln.201100431.10.1002/jpln.201100431
  9. 9. Thakker, M., Karde, V. & Shah, D.O. (2013). Wettability measurement apparatus for porous material using the modified Washburn method. Meas. Sci. Technol. 24, 125902.10.1088/0957-0233/24/12/125902
  10. 10. Thomas, E.A., Poritz, D.H. & Muirhead, D.L. (2013). Urine Advancing Contact Angle on Several Surfaces. J. Adhes. Sci. Technol. 2 3(19), 17–23. DOI: 10.1163/016942409X125085 17390879.
  11. 11. Yang, B., Song, S. & Lopez-Valdivieso, A. (2014). Effect of Particle Size on the Contact Angle of Molybdenite Powders. Mineral Processing & Extractive Metall. Rev. 35, 208–215. DOI: 10.1080/08827508.2013.763802.10.1080/08827508.2013.763802
  12. 12. Tamayol, A. & Bahrami, M. (2011). Transverse permeability of fibrous porous media. Phys. Rev E. 83, 046314. DOI: 10.1103/PhysRevE.83.046314.10.1103/PhysRevE.83.04631421599302
  13. [13] Guo, P. (2012). Dependency of Tortuosity and Permeability of Porous Media on Directional Distribution of Pore Voids. Transp. Porous Med. 95(20 12), 285–303. DOI: 10.1007/s11242-012-0043-8.10.1007/s11242-012-0043-8
  14. 14. Li, K. (2010). More general capillary pressure and relative permeability models from fractal geometry. J. Contam. Hydrol. 111, 13–24. DOI: 10.1016/j.jconhyd.2009.10.005.10.1016/j.jconhyd.2009.10.005
  15. 15. Cai, J. & Yu, B. (2011). A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media. Transp. Porous Med. 89(2), 251–263. DOI: 10.1007/s11242-011-9767-0.10.1007/s11242-011-9767-0
  16. 16. Cai, J., Hu, X., & Standnes, D.C. (2012). An analytical model for spontaneous imbibition in fractal porous media including gravity. Colloids Surface A. 414, 228–233. DOI: 10.1016/j.colsurfa.2012.08.047.10.1016/j.colsurfa.2012.08.047
  17. 17. Dang, T. & Hupka, J. (2005). Characterization of porous materials by capillary rise method. Physicochem. Probl. Mi. 39(205), 47–65.
  18. 18. Stevens, N., Ralston, J. & Sedev, R. (2009). The uniform capillary model for packed beds and particle wettability. J. Colloid Interf. Sci. 337(1),162–169. DOI: 10.1016/j.jcis.2009.04.086.10.1016/j.jcis.2009.04.086
  19. 19. Kramer, G.J. (1998). Static liquid hold-up and capillary rise in packed beds. Chem. Eng. Sci. 16(29), 85–92. DOI: 10.1016/S0009-2509(98)80001-8.10.1016/S0009-2509(98)80001-8
  20. 20. Chan, T.Y., Hsu, C.S. & Lin, S.T. (2004). Factors Affecting the Significance of Gravity on the Infiltration of a Liquid into a Porous Solid. J. Porous Mat. 11(4), 273–277. DOI: 10.1023/B: JOPO.0000046354.27879.9b.10.1023/B:JOPO.0000046354.27879.9b
  21. 21. Fries, N. & Dreyer, M. (2008). An analytic solution of capillary rise restrained by gravity. J. Colloid Interf. Sci. 320(1), 259–263. DOI: 10.1016/j.jcis.2008.01.009 .10.1016/j.jcis.2008.01.00918255086
  22. 22. Torquato, S. (2002). Random Heterogeneous Materials: Microstructure and Macroscopic Properties. NewYork, USA: Springer. DOI: 10.1115/1.1483342.10.1115/1.1483342
  23. 23. Elsner, A., Wagner, A. & Aste, T. (2009). Specific Surface Area and Volume Fraction of the Cherry-Pit Model with Packed Pits. J. Phys. Chem. B. 113(22), 7780–7784. DOI: 10.1021/jp806767m.10.1021/jp806767m19425581
  24. 24. Hermann, H. (2010). Effective dielectric and elastic properties of nanoporous low-k media. Modelling Simul. Mater. Sci. Eng. 18(5), 055007. DOI: 10.1088/0965-0393/18/5/055007.10.1088/0965-0393/18/5/055007
  25. 25. Li, K. & Zhao, H. (2012). Fractal Prediction Model of Spontaneous Imbibition Rate. Transp. Porous. Med. 91(2), 363–376. DOI: 10.1007/s11242-011-9848-0.10.1007/s11242-011-9848-0
  26. 26. Masoodi, R., Languri, E. & Ostadhossein, A. (2013). Dynamics of liquid rise in a vertical capillary tube. J. Colloid Interf. Sci. 389(1), 268–272. DOI: 10.1016/j.jcis.2012.09.004.10.1016/j.jcis.2012.09.00423063064
  27. 27. John, C.B. (1993). Wettability. New York, USA: Elsevier.
  28. 28. Carman, P.C. (1937). Fluid flow through granular beds. Trans. Inst. Chem. Eng, 15, 32–48.10.1016/S0263-8762(97)80003-2
  29. 29. Hermann, H. & Elsner, A. (2014). Geometric Models for Isotropic Random Porous Media: A Review. Adv. Mater. Sci. Eng. (2014), 1–16. DOI: 10.1155/2014/562874.10.1155/2014/562874
  30. 30. Cai, J., Yu, B. & Zou, M. (2010). Fractal Characterization of Spontaneous Co-current Imbibition in Porous Media. Energ. Fuel. 24(2010), 1860–1867. DOI: 10.1021/ef901413p.10.1021/ef901413p
  31. 31. Zhmud, B.V., Tiberg, F. & Hallstensson, K. (2000). Dynamics of Capillary Rise. J. Colloid Interf. Sci. 228(2), 263–269. DOI: 10.1006/jcis.2000.6951.10.1006/jcis.2000.695110926465
  32. 32. Li, G. Chen, X. & Huang, Y. (2015). Contact Angle Determined by Spontaneous Imbibition in Porous Media: Experiment and Theory. J. Disper. Sci. Technol. 36(6), 772–777. DOI: 10.1080/01932691.2014.921627.10.1080/01932691.2014.921627
  33. 33. Olafuyi, O.A., Cinar, Y. & Knackstedt, M.A. (2007). Spontaneous imbibition in small cores. SPE Asia Pacific Oil and Gas Conference and Exhibition. 30 October 2007. Jakarta, Indonesia. DOI: 10.2118/109724-MS.10.2118/109724-MS
Language: English
Page range: 1 - 6
Published on: Apr 13, 2022
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Hui Gao, Guangyu Li, Zhongjing Wang, Nuo Xu, Zongyu Wu, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.