Have a personal or library account? Click to login
Synthesis and mechanical and thermal properties of multiblock terpoly(ester-ether-amide) thermoplastic elastomers with variable mole ratio of ether and amide block Cover

Synthesis and mechanical and thermal properties of multiblock terpoly(ester-ether-amide) thermoplastic elastomers with variable mole ratio of ether and amide block

By: Beata Schmidt and  Joanna Rokicka  
Open Access
|Dec 2021

References

  1. 1. Aleksandrovic, V., Djonlagic, J. (2001). Synthesis and characterization of thermoplastic copolyester elastomers modified with fumaric moieties. J. Serb. Chem. Soc. 66(3), 139–152. DOI: 10.2298/JSC0103139A.10.2298/JSC0103139A
  2. 2. Van der Schuur, M., Gaymans, R. (2007). Influence of morphology on the properties of segmented block copolymers. Polymer, 48, 1998–2006. DOI: 10.1016/j.polymer.2007.01.063.10.1016/j.polymer.2007.01.063
  3. 3. Wilson, R., Divakaran, A., Kiran, S., Varyambath, A., Kumaran, A., Sivaram, S., Ragupathy, L. (2018). Poly(glycerol sebacate)-Based Polyester–Polyether Copolymers and Their Semi-Interpenetrated Networks with Thermoplastic Poly(ester– ether) Elastomers: Preparation and Properties. ACS Omega. 3, 18714–18723. DOI: 10.1021/acsomega.8b02451.10.1021/acsomega.8b02451631263230613821
  4. 4. Holden, G. (2011). Thermoplastic Elastomers. In M. Kutz (Ed.), Appl. Plastics Engin. Handbook, 77–91, Waltham, Elsevier.10.1016/B978-1-4377-3514-7.10006-6
  5. 5. Holden, G., Bishop, E., Legge, N. (1969). Thermo-plastic elastomers. J. Polym. Sci. 26, 1, 37–57. DOI: 10.1002/polc.5070260104.10.1002/polc.5070260104
  6. 6. Balta Callej,a F.J., Rosłaniec, Z. (2000). Block copolymers, New York, Marcel Dekker.10.1201/9781482270358
  7. 7. Zhang, J., Deubler, R., Hartlieb, M., et al. (2017). Evolution of Microphase Separation with Variations of Segments of Sequence-Controlled Multiblock Copolymers. Macromolecules, 50, 18, 7380–7387. DOI: 10.1021/acs.macromol.7b01831.10.1021/acs.macromol.7b01831
  8. 8. Bates, F.S., Fredrickson, G.H. (1999). Block Copolymers—Designer Soft Materials. Physics Today, 52, 33–38. DOI: 10.1063/1.882522.10.1063/1.882522
  9. 9. Armstrong, S., Freeman, B., Hiltner, A., Baer, E. (2012). Gas permeability of melt-processed poly(ether block amide) co-polymers and the effects of orientation. Polymer. 53, 1383–1392. DOI: 0.1016/j.polymer.2012.01.037.10.1016/j.polymer.2012.01.037
  10. 10. Krijgsman, J., Husken, D., Gaymans, R. (2003). Synthesis and properties of thermoplastic elastomers based on PTMO and tetra-amide. Polymer, 44, 7573–7588. DOI: 10.1016/j. polymer.2003.09.043.10.1016/j.polymer.2003.09.043
  11. 11. Yang, I., Tsai, P. (2006). Intercalation and viscoelasticity of poly(ether-block-amide) copolymer/montmorillonite nano-composites: Effect of surfactant. Polymer, 47, 5131–5140. DOI: 10.1016/j.polymer.2006.04.065.10.1016/j.polymer.2006.04.065
  12. 12. Nojima, S., Kiji, T., Ohguma, Y. (2007). Characteristic Melting Behavior of Double Crystalline Poly(ε-caprolactone)-block-polyethylene Copolymers. Macromolecules, 40, 21, 7566–7572. DOI: 10.1021/ma0627830.10.1021/ma0627830
  13. 13. Klinedinst, D., Yilgör, I., Yilgör, E., et al. (2012). The effect of varying soft and hard segment length on the structure–property relationships of segmented polyurethanes based on a linear symmetric diisocyanate, 1,4-butanediol and PTMO soft segments. Polymer, 53, 5358–5366. DOI: 10.1016/j. polymer.2012.08.005.10.1016/j.polymer.2012.08.005
  14. 14. Winnacker, M., Rirger, B. (2015). Poly(ester amide)s: recent insights into synthesis, stability and biomedical applications. Polym. Chem. 7, 7039–7046. DOI: 10.1039/C6PY01783E.10.1039/C6PY01783E
  15. 15. Rodriguez-Galan, A., Lourdes, F., Puiggali, J. (2010). Degradable Poly(ester amide)s for Biomedical Applications. Polymers, 3(1), 1634–1645. DOI: 10.3390/polym3010065.10.3390/polym3010065
  16. 16. Sijbrandi, N., Kimenai, A., Mes E., et al. (2012). Synthesis, Morphology, and Properties of Segmented Poly(ether amide)s with Uniform Oxalamide-Based Hard Segments. Macromolecules, 45, 9, 3948–3961. DOI: 10.1021/ma2022309.10.1021/ma2022309
  17. 17. Fu, T., Wei, Y., Cheng, P., et al. (2018). A Novel Biodegradable and Thermosensitive Poly(Ester-Amide) Hydrogel for Cartilage Tissue Engineering. BioMed Research International. Art. id 2710892. Retrieved June 2, 2021 from Hindawi.com database on the World Wide Web: https://www.hindawi.com. DOI: 10.1155/2018/2710892.10.1155/2018/2710892631398230662902
  18. 18. Zeng, F., Xu, J., Sun, L., et al. (2020). Copolymers of ε-caprolactone and ε-caprolactam via polyesterification: towards sequence-controlled poly(ester amide)s. Polym. Chem. 11, 1211–1219. DOI: 10.1039/C9PY01388A.10.1039/C9PY01388A
  19. 19. Goonoo, N., Bhaw-Luximon, A., Bowlin, G., Jhurry, D. (2012). Diblock Poly(ester)-Poly(ester-ether) Copolymers: I. Synthesis, Thermal Properties, and Degradation Kinetics. Ind. Eng. Chem. Res. 51, 37, 12031–12040. DOI: 10.1021/ie301703j.10.1021/ie301703j
  20. 20. Xu, Q., Tang, L., Wang, Ch., et al. (2017). Effects of Poly(Ethylene Glycol) Segment on Physical and Chemical Properties of Poly(Ether Ester) Elastomers. Materials Science Forum, 898, 2147–2157. Retrieved June 10, 2021 from Scientific. net database on the World Wide Web: https://www.scientific.net. DOI: 10.4028/www.scientific.net/MSF.898.2147.10.4028/www.scientific.net/MSF.898.2147
  21. 21. Catiker, E., Ozturk, T., Atakay, M., et al. (2019). Synthesis and characterization of novel ABA type poly(Ester-ether) triblock copolymers. J. Polym. Res. 26, 123–126. DOI: 10.1007/s10965-019-1778-5.10.1007/s10965-019-1778-5
  22. 22. Peng, X., Behl, M., Zhang, P., et al., (2017). Synthesis and Characterization of Multiblock Poly(Ester-Amide-Urethane) s. MRS Advances, 2, 2551–2559. DOI: 10.1557/adv.2017.486.10.1557/adv.2017.486
  23. 23. Van Krevelen, D.W., Te Nijehuis, K. (2009). Properties of Polymers, Amsterdam, Elsevier.
  24. 24. Scheirs, J., Long, T.E. (2003). Modern Polyesters:chemistry and technology of polyesters and copolyesters, Hoboken, John Wiley & Sons.10.1002/0470090685
  25. 25. Touris, A., Turcios, A., Mintz, E., et al. (2020). Effect of molecular weight and hydration on the tensile properties of polyamide 12. Results in Materials, 8, 100149. DOI 10.1016/j. rinma.2020.100149.10.1016/j.rinma.2020.100149
  26. 26. O’Connor, H.J., Dickson, A.N., Dowling, D.P. (2018). Evaluation of the mechanical performance of polymer parts fabricated using a production scale multi jet fusion printing process. Additive Manufacturing, 22, 381–387. DOI: 10.1016/j. addma.2018.05.03510.1016/j.addma.2018.05.035
  27. 27. Rosenbloom, S.I., Gentekos, D.T., Silberstein, M.N., Fors, B.P. (2020). Tailor-made thermoplastic elastomers: customisable materials via modulation of molecular weight distributions. Chem. Sci. 11, 1361–1367. DOI: 10.1039/C9SC05278J.10.1039/C9SC05278J
  28. 28. Cho, H., Mayer, S., Poselt, E., et al. (2017). Deformation mechanisms of thermoplastic elastomers: Stress-strain behavior and constitutive modeling. Polymer, 128, 87–99. DOI: 10.1016/j. polymer.2017.08.065.10.1016/j.polymer.2017.08.065
Language: English
Page range: 10 - 16
Published on: Dec 30, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Beata Schmidt, Joanna Rokicka, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.