Have a personal or library account? Click to login
Heat effects in the reaction of sulfuric acid with ilmenites influenced by initial temperature and acid concentration Cover

Heat effects in the reaction of sulfuric acid with ilmenites influenced by initial temperature and acid concentration

Open Access
|Oct 2021

References

  1. 1. Blakey, R.R. & Hall, J.E., Titanium Dioxide, in Pigment Handbook (P.A. Lewis, Ed.), Wiley, NY, 1987.
  2. 2. Winkler, J. (2003). Titanium Dioxide, Vincentz Network, Hannover.
  3. 3. Gázquez, M.J., Bolívar, J.P., García-Tenorio, R. & Vaca, F., (2009). Physicochemical characterization of raw materials and co-products from the titanium dioxide industry, J. Hazard. Mater., 166, 1429–1440. DOI: 10.1016/j.jhazmat.2008.12.067.10.1016/j.jhazmat.2008.12.06719167156
  4. 4. Mantero, J., Gázquez, M.J., Bolívar, J.P., García-Tenorio, R. & Vaca, F. (2013). Radioactive characterization of the main materials involved in the titanium dioxide production process and their environmental radiological impact. J. Environ. Radio-act. 120, 26–32. DOI: 10.1016/j.jenvrad.2013.01.002.10.1016/j.jenvrad.2013.01.00223416226
  5. 5. Han, G., Wen, S., Wang, H. & Feng, Q. (2020). Interaction mechanism of tannic acid with pyrite surfaces and its response to flotation separation of chalcopyrite from pyrite in a low-alkaline medium. J. Mater. Res. Technol., 9, 4421–4430. DOI: 10.1016/j.jmrt.2020.02.067.10.1016/j.jmrt.2020.02.067
  6. 6. Zhang, Q., Wen, S., Feng, Q. & Liu, J. (2021). Surface modification of azurite with lead ions and its effects on the adsorption of sulfide ions and xanthate species. Appl. Surf. Sci. 543, 148795. DOI: 10.1016/j.apsusc.2020.148795.10.1016/j.apsusc.2020.148795
  7. 7. Dubenko, A.V., Nikolenko, M.V., Aksenenko, E.V., Kostyniuk, A. & Likozar, B. (2020). Mechanism, Thermodynamics and Kinetics of Rutile Leaching Process by Sulfuric Acid Reactions. Processes 8, 640. DOI: 10.3390/pr8060640.10.3390/pr8060640
  8. 8. Dubenko, A.V., Nikolenko, M.V., Kostyniuk, A. & Likozar, B. (2020). Sulfuric Acid Leaching of Altered Ilmenite Using Thermal. Mechanical and Chemical Activation. Minerals 10, 538. DOI: 10.3390/min10060538.10.3390/min10060538
  9. 9. Liang, B., Li, C., Zhang, C. & Zhang, Y. (2005). Leaching kinetics of Panzhihua ilmenite in sulfuric acid. Hydrometallurgy 76, 173–179. DOI: 10.1016/j.hydromet.2004.10.006.10.1016/j.hydromet.2004.10.006
  10. 10. Johnson, R.W., Audy, S.W. & Unwin, S.D. (2003). Essential Practices for Managing Chemical Reactivity Hazards, New York, AIChE.10.1002/9780470925300
  11. 11. Bretherick’s Handbook of Reactive Chemical Hazards (P.G. Urben, Ed.), Academic Press, Amsterdam, 2006.
  12. 12. Zheng, Y., Zhang, C. & Liu, H. (2020).The determination of isobaric heat capacities of liquid by the new flow calorimeter. Thermoch. Acta 690, 178644. DOI: 10.1016/j.tca.2020.178644.10.1016/j.tca.2020.178644
  13. 13. Ding, J., Yu, L., Wang, J., Xu, Q. & Ye, S. (2019). A symmetric dual-channel accelerating rate calorimeter with the varying thermal inertia consideration. Thermoch. Acta 678, 178304. DOI: /10.1016/j.tca.2019.178304.
  14. 14. Hany, C., Lebrun, H., Pradere, C., Toutain, J. & Batsale, J.Ch. (2010). Thermal analysis of chemical reaction with a continuous microfluidic calorimeter. Chem. Engin. J. 160, 814–822. DOI: 10.1016/j.cej.2010.02.048.10.1016/j.cej.2010.02.048
  15. 15. Duh, Y.S., Hsu, C.C., Kao, C.S. & Yu, S.W. (1996). Applications of reaction calorimetry in reaction kinetics and thermal hazard evaluation. Thermoch. Acta, 285, 67–9.10.1016/0040-6031(96)02899-7
  16. 16. Ortín, J., Torra, V. & Tachoire, H. (1987). Thermal power measurements in a differential-heat-conduction-scanning calorimeter at low temperature-scanning rates. Thermoch. Acta 121, 333–342. DOI: 10.1016/0040-6031(87)80183-1.10.1016/0040-6031(87)80183-1
  17. 17. Leung, J.C., Fauske, H.K. & Fisher, H.G. (1986). Thermal runaway reactions in a low thermal inertia apparatus. Thermoch. Acta 104, 13–29. DOI: 10.1016/0040-6031(86)85180-2.10.1016/0040-6031(86)85180-2
  18. 18. Jabłoński, M. & Tylutka, S. (2016). The influence of initial concentration of sulfuric acid on the degree of leaching of the main elements of ilmenite raw materials. J. Thermal Anal. Calorim. 124, 355–361. DOI: 10.1007/s10973-015-5114-y.10.1007/s10973-015-5114-y
  19. 19. Przepiera, A., Jabłoński, M. & Wiśniewski, M. (1993). Study of kinetics of reaction of titanium raw materials with sulphuric acid. J. Thermal Anal. 40, 1341–1345. DOI: 10.1007/BF02546898.10.1007/BF02546898
  20. 20. Jabłoński, M. (2009). Influence of particle size distribution on thermokinetics of ilmenite with sulphuric acid reaction. J. Thermal Anal. Calorim. 96, 971–977. DOI: 10.1007/s10973-009-0048-x.10.1007/s10973-009-0048-x
  21. 21. Jabłoński, M., Ławniczak-Jabłońska, K. & Klepka, M.T. (2012). Investigation of phase composition of ilmenites and influence of this parameter on thermokinetics of reaction with sulphuric acid. J. Thermal Anal. Calorim. 109, 1379–1385. DOI: 10.1007/s10973-011-2136-y.10.1007/s10973-011-2136-y
  22. 22. Parapari, P.S., Irannajad, M. & Mehdilo, A. (2016). Modification of ilmenite surface properties by superficial dissolution method. Miner. Engin., 92, 160–167. DOI: 10.1016/j.mineng.2016.03.016.10.1016/j.mineng.2016.03.016
  23. 23. Jabłoński, M. (2010). Investigation of thermal power of reaction of titanium slag with sulphuric acid. Central Europ. J. Chem. 8(1), 149–154. DOI: 10.2478/s11532-009-0127-7.10.2478/s11532-009-0127-7
  24. 24. Jabłoński, M. (2008). Investigation of reaction products of sulphuric acid with ilmenite, J.Thermal Anal. Calorim., 93, 717–720. DOI: 10.1007/s10973-008-9134-8.10.1007/s10973-008-9134-8
  25. 25. Dobrovolski, I.P. (1988). The chemistry and technology of the oxide compounds of titanium, Sverdlovsk: UrO AN SSSR.
  26. 26. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L. & Nuttall, R.L. (1982. The NBS Tables of Chemical Thermodynamic Properties. J. Phys. Chem. Ref. Data 11, Suppl. 2.
  27. 27. Barin, I. & Knacke, O. (1973). Thermochemical properties of inorganic substances, Springer-Verlag Berlin Heildelberg New York.
  28. 28. Carl, L. (2009). Yaws’ Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals, Publisher Knovel, Electronic ISBN 978-1-60119-797-9.
  29. 29. Ginsberg, T., Modigell, M. & Wilsmann, W. (2011). Thermochemical characterization of the calcination process step in the sulphate method for production of titanium dioxide, Chemical Engineering Research and Design, 89, 990–994. DOI: 10.1016/j.cherd.2010.11.006.10.1016/j.cherd.2010.11.006
Language: English
Page range: 37 - 42
Published on: Oct 14, 2021
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Maciej Jabłoński, Krzysztof Lubkowski, Sandra Tylutka, Andrzej Ściążko, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.