3. Gázquez, M.J., Bolívar, J.P., García-Tenorio, R. & Vaca, F., (2009). Physicochemical characterization of raw materials and co-products from the titanium dioxide industry, J. Hazard. Mater., 166, 1429–1440. DOI: 10.1016/j.jhazmat.2008.12.067.10.1016/j.jhazmat.2008.12.06719167156
4. Mantero, J., Gázquez, M.J., Bolívar, J.P., García-Tenorio, R. & Vaca, F. (2013). Radioactive characterization of the main materials involved in the titanium dioxide production process and their environmental radiological impact. J. Environ. Radio-act. 120, 26–32. DOI: 10.1016/j.jenvrad.2013.01.002.10.1016/j.jenvrad.2013.01.00223416226
5. Han, G., Wen, S., Wang, H. & Feng, Q. (2020). Interaction mechanism of tannic acid with pyrite surfaces and its response to flotation separation of chalcopyrite from pyrite in a low-alkaline medium. J. Mater. Res. Technol., 9, 4421–4430. DOI: 10.1016/j.jmrt.2020.02.067.10.1016/j.jmrt.2020.02.067
6. Zhang, Q., Wen, S., Feng, Q. & Liu, J. (2021). Surface modification of azurite with lead ions and its effects on the adsorption of sulfide ions and xanthate species. Appl. Surf. Sci. 543, 148795. DOI: 10.1016/j.apsusc.2020.148795.10.1016/j.apsusc.2020.148795
7. Dubenko, A.V., Nikolenko, M.V., Aksenenko, E.V., Kostyniuk, A. & Likozar, B. (2020). Mechanism, Thermodynamics and Kinetics of Rutile Leaching Process by Sulfuric Acid Reactions. Processes 8, 640. DOI: 10.3390/pr8060640.10.3390/pr8060640
8. Dubenko, A.V., Nikolenko, M.V., Kostyniuk, A. & Likozar, B. (2020). Sulfuric Acid Leaching of Altered Ilmenite Using Thermal. Mechanical and Chemical Activation. Minerals 10, 538. DOI: 10.3390/min10060538.10.3390/min10060538
10. Johnson, R.W., Audy, S.W. & Unwin, S.D. (2003). Essential Practices for Managing Chemical Reactivity Hazards, New York, AIChE.10.1002/9780470925300
12. Zheng, Y., Zhang, C. & Liu, H. (2020).The determination of isobaric heat capacities of liquid by the new flow calorimeter. Thermoch. Acta 690, 178644. DOI: 10.1016/j.tca.2020.178644.10.1016/j.tca.2020.178644
14. Hany, C., Lebrun, H., Pradere, C., Toutain, J. & Batsale, J.Ch. (2010). Thermal analysis of chemical reaction with a continuous microfluidic calorimeter. Chem. Engin. J. 160, 814–822. DOI: 10.1016/j.cej.2010.02.048.10.1016/j.cej.2010.02.048
16. Ortín, J., Torra, V. & Tachoire, H. (1987). Thermal power measurements in a differential-heat-conduction-scanning calorimeter at low temperature-scanning rates. Thermoch. Acta 121, 333–342. DOI: 10.1016/0040-6031(87)80183-1.10.1016/0040-6031(87)80183-1
18. Jabłoński, M. & Tylutka, S. (2016). The influence of initial concentration of sulfuric acid on the degree of leaching of the main elements of ilmenite raw materials. J. Thermal Anal. Calorim. 124, 355–361. DOI: 10.1007/s10973-015-5114-y.10.1007/s10973-015-5114-y
19. Przepiera, A., Jabłoński, M. & Wiśniewski, M. (1993). Study of kinetics of reaction of titanium raw materials with sulphuric acid. J. Thermal Anal. 40, 1341–1345. DOI: 10.1007/BF02546898.10.1007/BF02546898
20. Jabłoński, M. (2009). Influence of particle size distribution on thermokinetics of ilmenite with sulphuric acid reaction. J. Thermal Anal. Calorim. 96, 971–977. DOI: 10.1007/s10973-009-0048-x.10.1007/s10973-009-0048-x
21. Jabłoński, M., Ławniczak-Jabłońska, K. & Klepka, M.T. (2012). Investigation of phase composition of ilmenites and influence of this parameter on thermokinetics of reaction with sulphuric acid. J. Thermal Anal. Calorim. 109, 1379–1385. DOI: 10.1007/s10973-011-2136-y.10.1007/s10973-011-2136-y
29. Ginsberg, T., Modigell, M. & Wilsmann, W. (2011). Thermochemical characterization of the calcination process step in the sulphate method for production of titanium dioxide, Chemical Engineering Research and Design, 89, 990–994. DOI: 10.1016/j.cherd.2010.11.006.10.1016/j.cherd.2010.11.006