2. Ahmadi, Moghadam, H. & Hossein, Paydar, M. (2016). The Effect of Nano CuO as Sintering Aid on Phase Formation, Microstructure and Properties of Li2O-Stabilized β″-Alumina Ceramics. J. Ceram. Sci. Tech., 07(04), 441–446. DOI: 10.4416/JCST2016-00075.
3. Shackelford, J.F. & Doremus, R.H. (2008). Ceramic and glass materials. Structure, properties and processing. Springer Science+Business Media LLC New York. ISBN 978-0-387-73361-6.10.1007/978-0-387-73362-3
5. Mandowska, E., Mandowski, A., Bilski, P., Marczewska, B., Twardak, A. & Gieszczyk, W. (2015). Lithium aluminate – a new detector for dosimetry. Prz. Elektrotech. 91(9), 117–120 (in Polish).
7. Özkan, G. & Incirkuş Ergençoglu, V. (2016). Synthesis and characterization of solid electrolyte structure material (LiAlO2) using different kinds of lithium and aluminum compounds for molten carbonate fuel cells. Indian J. Chem. Technol. 23, 227–231.
8. Kim, J.E., Patil, K.Y., Han, J., Yoon, S.P., Nam, S.W., Lim, T.H., Hong, S.A., Kim, H. & Lim, H.Ch. (2009). Using aluminum and Li2CO3 particles to reinforce the α-LiAlO2 matrix for molten carbonate fuel cells. Internat. J. Hydrogen Energy 34(22), 9227–9232. DOI: 10.1016/j.ijhydene.2009.08.069.10.1016/j.ijhydene.2009.08.069
10. Ávalos-Rendón, T., Casa-Madrid, J. & Pfeiffer, H. (2009). Thermochemical Capture of Carbon Dioxide on Lithium Aluminates (LiAlO2 and Li5AlO4): A New Option for the CO2 Absorption. J. Phys. Chem. A, 113, 6919–6923. DOI: 10.1021/jp902501v.10.1021/jp902501v19489587
12. Fouad, O.A., Farghaly, F.I. & Bahgat, M. (2007). A novel approach for synthesis of nanocrystalline γ-LiAlO2 from spent lithium-ion batteries. J. Anal. Appl. Pyrolysis. 78, 65–69. DOI: 10.1016/j.jaap.2006.04.002.10.1016/j.jaap.2006.04.002
14. Indris, S. & Heitjans, P. (2006). Local electronic structure in a LiAlO2 single crystal studied with 7Li NMR spectroscopy and comparison with quantum chemical calculations. Phys. Rev. B 74, 245120-1-5. DOI: 10.1103/PhysRevB.74.245120.10.1103/PhysRevB.74.245120
15. Duan, Y., Sorescu, D.C., Jiang, W. & Senor, D.J. (2020) Theoretical study of the electronic, thermodynamic, and thermo-conductive properties of γ-LiAlO2 with 6Li isotope substitutions fortritium production. J. Nucl. Mater. 530, 151963. DOI: 10.1016/j.nucmat.2019.151963.
21. Kriens, M., Adiwidjaja, G., Guse, W., Klaska, K.H., Lathe, C. & Saalfeld, H. (1996). The crystal structures of LiAl5O8 and Li2Al4O7. N. Jb. Miner. Mh. 8, 344–350.
24. Byker, H.J., Eliezer, I., Eliezer, N. & Howald, R.A. (1979). Calculation of a Phase Diagram for LiO0.5–AlO1.5 System. J. Phys. Chem. 83, 18, 2349–2355. DOI: 10.1021/j100481a009.10.1021/j100481a009
25. Konar, B., Van Ende, M.A. & Junh, I.H. (2018). Critical Evaluation and Thermodynamic Optimization of the Li2O-Al2O3 and Li2O–MgO–Al2O3 Systems. Metall. Mat. Trans. B 49, 2917–2944. DOI: 10.1007/s11663-018-1349-x.10.1007/s11663-018-1349-x
35. Chang, C.H. & Margrave, J.L. (1968). Highpressure-high temperature synthesis. III. Direct synthesis of new high-pressure forms of LiAlO2 and LiGaO2 and polymorphism in LiMO2 compounds (M=B, Al, Ga). J. Amer. Chem. Soc. 90, 2020–2022. DOI: 10.1021/ja01010a018.10.1021/ja01010a018
38. Wiedemann, D., Indris, S., Meyen, M. & Pedersen, B. (2016) Single-crystal neutron diffraction on γ-LiAlO2: Structure determination and estimation of lithium diffusion pathway. Zeitschrift für Kristallographie – Crystalline Materials. 231(3), 189–193. DOI: 10.14279/depositonce-5480.
40. Jimenez-Becerril, J. & Garcia-Sosa, I. (2011). Synthesis of lithium aluminate by thermal decomposition of a lithium dawsonite-type precursor. J. Ceram. Process. Res. 12, 52–56.
41. Heo, S.J., Batra, R., Ramprasad, R. & Singh, P. (2018). Crystal morphology and phase transformation of LiAlO2: combined experimental and first-principles Studies. J. Phys. Chem. C 222, 28797–28804. DOI: 10.1021/acs.jpcc.8b09716.10.1021/acs.jpcc.8b09716
45. Cao, H., Xia, B., Zhang, Y., Xu, N. (2005). LiAlO2-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics. 176, 911–914. DOI: 10.1016/j.ssi.2004.12.001.10.1016/j.ssi.2004.12.001
47. Lejus, A.M. (1964). Sur la formation a haute temperature de spinelles non stechiométriques et de phases derivées dans plusieurs systémes d’oxydes a base d’alumina et dans le systéme alumina-nitrure d’aluminum. Rev. Hautes Tempér. et Réfract., 1, 53–95.
49. Isupov, V.P., Bulina, N.V. & Borodulina, I.A. (2017). Effect of Water Vapor Pressure on the Phase Composition of Lithium Monoaluminates Formed in the Interaction of Aluminum Hydroxide and Lithium Carbonate. Zhurnal Prikladnoi Khimii, 90, 986−991. DOI: 10.1134/S1070427217080043.10.1134/S1070427217080043
50. Tarte, P. (1967). Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim. Acta 23A, 2127–2143. DOI: 10.1016/0584-8539(67)80100-4.10.1016/0584-8539(67)80100-4
53. La Ginestra, A., Lo Jacono, M. & Porta, P. (1972). The preparation, characterization, and thermal behaviour of some lithium aluminum oxides: Li3AlO3 and Li5AlO4. J. Thermal Anal. 4, 5–17. DOI: 10.1007/bf02100945.10.1007/BF02100945
54. Kroger, C. & Fingas, E. (1935). Über die Systeme Alkalioxyd–CaO–Al2O3–SiO2–CO2. IV. Die CO2-Drucke des kieselsäurereicheren Teils des Systems Li2O–SiO2–CO2 und der Einwirkung von Al2O3 auf Li2CO3. Z anorg. Allg. Chem. 224, 289–304. DOI: 10.1002/zaac.19352240309.10.1002/zaac.19352240309
57. Tabero, P. (2010). Formation and properties of the new Al8V10W16O85 and Fe8-xAlxV10W16O85 phases with the M-Nb2O5 structure. J. Therm. Anal. Calorim. 101, 560–566. DOI: 10.1007/s10973-010-0848-z.10.1007/s10973-010-0848-z
61. Krokodis, X., Raybaud, P., Gobichon, A.E., Rebours, B., Euzen, P. & Toulhoat, H. (2001). Theoretical Study of the Dehydration Process of Boehmite to γ-Alumina. J. Phys. Chem. B 105, 5121–5130. DOI: 10.1021/jp0038310.10.1021/jp0038310
62. Kim, J., Kang, H., Hwang, K. & Yoon, S. (2019). Thermal Decomposition Study on Li2O2 for Li2NiO2 Synthesis as a Sacrificing Positive Additive of Lithium-Ion Batteries. Molecules 24, 4624–4632. DOI: 10.3390/molecules24244624.10.3390/molecules24244624694373031861185