Have a personal or library account? Click to login
The influence of sulfur addition on the hazard-type reaction of ilmenite ores with sulfuric acid Cover

The influence of sulfur addition on the hazard-type reaction of ilmenite ores with sulfuric acid

Open Access
|Oct 2021

References

  1. 1. Johnson, R.W., Audy, S.W. & Unwin, S.D. (2003). Essential Practices for Managing Chemical Reactivity Hazards. New York: AIChE.10.1002/9780470925300
  2. 2. Bretherick’s Handbook of Reactive Chemical Hazards (P.G. Urben, Ed.). Amsterdam: Academic Press, 2006.
  3. 3. OSHA. (2016). Hazard Communication. Hazard Classification Guidance for Manufacturers, Importers, and Employers.
  4. 4. Gustin, J.L. (2002). How the study of accident case histories can prevent runaway reaction accidents from recurring. Proc. Safety Environ. Protec., 80, 16–24. DOI: 10.1205/095758202753502370.10.1205/095758202753502370
  5. 5. Fujita, M., Izato, Y., Iizuka, Y. & Miyake, A. (2019). Thermal hazard evaluation of runaway polymerization of acrylic acid. Proc. Safety Environ. Protec., 129, 339–347. DOI: 10.1016/j.psep.2019.08.003.10.1016/j.psep.2019.08.003
  6. 6. Casson, V., Lister, D.G., Milazzo, M.F. & Maschio, G. (2012). Comparison of criteria for predi ction of ru naway reactions in the sulphuric acid catalyzed esterification of acetic anhydride and methanol. J. Loss Prev. Proc. Ind., 25, 209–217. DOI: 10.1016/j.jlp.2011.09.002.10.1016/j.jlp.2011.09.002
  7. 7. Ni, L., Mebarki, A., Jiang, J., Zhang, M., Pensee, V. & Dou, Z. (2016). Thermal risk in batch reactors: Theoretical framework for runaway and accident. J. Loss Prev. Proc. Ind., 43, 75–82. DOI: 10.1016/j.jlp.2016.04.004.10.1016/j.jlp.2016.04.004
  8. 8. Sasikumar, C., Rao, D.S., Srikanth, S., Ravikumar, B., Mukhopadhyay, N.K. & Mehrotra, S.P. (2004). Effect of mechanical activation on the kinetics of sulfuric leaching of beach sand ilmenite from Orissa, India. Hydrometallurgy, 75, 189–204. DOI: 10.1016%2Fj.hydromet.2004.08.001.10.1016/j.hydromet.2004.08.001
  9. 9. Liang, B., Li, C., Zhang, C. & Zhang, Y. (2005). Leaching kinetics of Panzhihua ilmenite in sulfuric acid. Hydrometallurgy, 76, 173–179. DOI: 10.1016%2Fj.hydromet.2004.10.006.10.1016/j.hydromet.2004.10.006
  10. 10. Li, C., Liang, B., Guo, L. & Wu, Z. (2006). Effect of mechanical activation on the dissolution of Panzhihua ilmenite. Minerals Engineering, 19(14), 1430–1438. DOI: 10.1016/j.mineng.2006.02.005.10.1016/j.mineng.2006.02.005
  11. 11. Greenwood, N.N. & Earnshaw, A. (1994). Chemistry of the elements. New York: Pergamon Press.
  12. 12. Winkler, J. (2003). Titanium Dioxide, Hannover: Vincentz Network.
  13. 13. Middlemas, S., Fang, Zak, Z. & Fan, P. (2013). A new method for production of titanium dioxide pigment. Hydrometallurgy, 131–132, 107–113. DOI: 10.1016/j.hydromet.2012.11.002.10.1016/j.hydromet.2012.11.002
  14. 14. Gázquez, M.J., Bolívar, J.P., García-Tenorio, R. & Vaca, F. (2009). Physicochemical characterization of raw materials and co-products from the titanium dioxide industry. J. Hazard. Mat., 166, 1429–1440. DOI: 10.1016/j.jhazmat.2008.12.067.10.1016/j.jhazmat.2008.12.06719167156
  15. 15. Zhang, W., Zhu, Z. & Yong, Cheng, A. (2011). A literature review of titanium metallurgical processes. Hydrometallurgy, 108, 177–188. DOI: 10.1016/j.hydromet.2011.04.005.10.1016/j.hydromet.2011.04.005
  16. 16. Mantero, J., Gázquez, M.J., Bolívar, J.P., García-Tenorio, R. & Vaca, F. (2013). Radioactive characterization of the main materials involved in the titanium dioxide production process and their environmental radiological impact. J. Environ. Radioactivity, 120, 26–32. DOI: 10.1016/j.jenvrad.2013.01.002.10.1016/j.jenvrad.2013.01.002
  17. 17. Dubenko, A.V., Nikolenko, M.V., Kostyniuk, A. & Likozar, B. (2020). Sulfuric Acid Leaching of Altered Ilmenite Using Thermal, Mechanical and Chemical Activation. Minerals, 10(6), 538. DOI: 10.3390/min10060538.10.3390/min10060538
  18. 18. Dubenko, A.V., Nikolenko, M.V., Kostyniuk, A. & Likozar, B. (2020). Mechanism, Thermodynamics and Kinetics of Rutile Leaching Process by Sulfuric Acid Reactions. Processes, 8(6), 640. DOI: 10.3390/pr8060640.10.3390/pr8060640
  19. 19. Moreno, V.C., Kanes, R., Wilday, J. & Vechot, L. (2015). Modeling of the venting of an untempered system under runaway conditions. J. Loss Prev. Process Ind., 36, 171–182. DOI: 10.1016%2Fj.jlp.2015.04.016.10.1016/j.jlp.2015.04.016
  20. 20. Lin, C.P., Li, J.S., Tseng, J.M. & Mannan, M.S. (2016). Thermal runaway reaction for highly exothermic material in safe storage temperature. J. Loss Prev. Proc. Ind. 40, 259–265. DOI: 10.1016/j.jlp.2016.01.006.10.1016/j.jlp.2016.01.006
  21. 21. Parapari, P.S., Irannajad, M. & Mehdilo, A. (2016). Modification of ilmenite surface properties by superficial dissolution method. Miner. Engin., 92, 160–167. DOI: 10.1016%2Fj.mineng.2016.03.016.10.1016/j.mineng.2016.03.016
  22. 22. Welham, N.J. & Llewellyn, D.J. (1998). Mechanical enhancement of the dissolution of ilmenite. Minerals Engineering, 11, 827–841. DOI: 10.1016/S0892-6875(98)00070-3.10.1016/S0892-6875(98)00070-3
  23. 23. Yu, J., Chen, L. & Peng J. (2012). Thermal hazard research smokeless fireworks. J. Thermal Anal. Calorimetry, 109, 1151–1156. DOI: 10.1007/s10973-012-2367-6.10.1007/s10973-012-2367-6
  24. 24. El-Sladek, M.H., Ahmed, H.M., El-Barawy, K., Morsi, M.B., El-Didamony, H. & Bjorkman, B. (2018). Non-isothermal carbothermic reduction kinetics of mechanically activated ilmenite containing self-reducing mixtures. J. Thermal Anal. Calorimetry, 131, 2457–2465. DOI: 10.1007/s10973-017-6743-0.10.1007/s10973-017-6743-0
  25. 25. Zheng, F., Guo, Y., Duan, W., Liu, S., Qiu, G., Chen, F., Jiang, T. & Wang, S. (2018). Transformation of Ti-bearing mineral in Panzhinua electric furnace titanium slag during oxidation roasting process. J. Thermal Anal. Calorimetry, 131, 1767–1776. DOI: 10.1007/s10973-017-6675-8.10.1007/s10973-017-6675-8
  26. 26. Jablonski, M., Lawniczak-Jablonska, K. & Klepka, M.T. (2012). Investigation of phase composition of ilmenites and influence of this parameter on thermokinetics of reaction with sulfuric acid. J. Thermal Anal. Calorimetry, 109, 1379–1385. DOI: 10.1007/s10973-011-2136-y.10.1007/s10973-011-2136-y
  27. 27. Jablonski, M. & Tylutka, S. (2016). The influence of initial concentration of sulfuric acid on the degree of leaching of the main elements of ilmenite raw materials. J. Thermal Anal. Calorimetry, 124, 355–361. DOI: 10.1007/s10973-015-5114-y.10.1007/s10973-015-5114-y
  28. 28. Jablonski, M. & Przepiera, A. (2001). Kinetic model for the reaction of ilmenite with sulfuric acid. J. Thermal Anal. Calorimetry, 65, 583–590. DOI: 10.1023/A:1012405826498.10.1023/A:1012405826498
  29. 29. Coddell, M. (1959). Analytical chemistry of titanium metals and compounds. New York, Intersciences Publishers Inc.
  30. 30. Barin, I. & Knacke, O. (1973). Thermochemical properties of inorganic substances. Springer-Verlag, Berlin.
  31. 31. Jablonski, M. (2009). Influence of particle size distribution on thermokinetics of ilmenite with sulfuric acid reaction. J. Thermal Anal. Calorimetry, 96, 971–977. DOI: 10.1007/s10973-009-0048-x.10.1007/s10973-009-0048-x
Language: English
Page range: 17 - 23
Published on: Oct 14, 2021
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Maciej Jabłoński, Krzysztof Lubkowski, Sandra Tylutka, Andrzej Ściążko, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.