Have a personal or library account? Click to login
Green synthesis of thioxoimidazolidine derivative ligand: Spectroscopic, thermal and biological assignments of new Cu(II), Co(II), and Ni(II) chelates in neutral system Cover

Green synthesis of thioxoimidazolidine derivative ligand: Spectroscopic, thermal and biological assignments of new Cu(II), Co(II), and Ni(II) chelates in neutral system

Open Access
|Oct 2021

References

  1. 1. Johnson, T.B. & Chernoff, L.H.J. (1912). Hydantoins: Synthesis of 5-Thiohydantoins [Nineteenth Paper]. Am. Chem. Soc. 34(9), 1208–1213. DOI: 10.1021/ja02210a011.10.1021/ja02210a011
  2. 2. Seki, M., Kajiwara, D., Mizutani, H. & Minamiguchi, K. (2020). Analysis of novel enzalutamide-resistant cells: up-regulation of testis-specific Y-encoded protein gene promotes the expression of androgen receptor splicing variant 7 Transl. Cancer Res., 2020, 9(10), 6232–6245. DOI: 10.21037/tcr-20-1463.10.21037/tcr-20-1463879881635117234
  3. 3. Kyriakopoulos, C.E., Heath, E.I., Ferrari, A., Sperger, J.M., Singh, A., Perlman, S.B., Roth, A.R., Perk, T.G., Modelska, K. & Porcari, A., et al. (2020). Exploring Spatial-Temporal Changes in 18F-Sodium Fluoride PET/CT and Circulating Tumor Cells in Metastatic Castration-Resistant Prostate Cancer Treated with Enzalutamide. J. Clin. Oncol. 38(31), 3662–3671. DOI: 10.1200/jco.20.00348.10.1200/JCO.20.0034832897830
  4. 4. Al-Salama, Z.T., (2018). Apalutamide: First Global Approval, Drugs, 78, 699–705. DOI: 10.1007/s40265-018-0900-z.10.1007/s40265-018-0900-z29626324
  5. 5. Dellis, A.E. & Papatsoris, A.G., (2018). Apalutamide: the established and emerging roles in the treatment of advanced prostate cancer. Expert. Opin. Investig. Drugs. 27(6), 553–559. DOI: 10.1080/13543784.2018.1484107.10.1080/13543784.2018.148410729856649
  6. 6. Chong, J.T, Oh, W.K. & Liaw, B.C., (2018). Profile of apalutamide in the treatment of metastatic castration-resistant prostate cancer: evidence to dateOnco. Targets Ther. 11, 2141–2147. DOI: 10.2147/OTT.S147168.10.2147/OTT.S147168590549629695920
  7. 7. Qamar, R., Saeed, A., Saeed, M. & Seo, S.Y., et al., (2018). Synthesis and enzyme inhibitory kinetics of some novel 3-(substituted benzoyl)-2-thioxoimidazolidin-4-one derivatives as α-glucosidase/α-amylase inhibitors. Med. Chem. Res. 27(5), 1528–1537. DOI: 10.1007/s00044-018-2170-4.10.1007/s00044-018-2170-4
  8. 8. Desai, N.C., Vaghani, H.V., Karkar, T.J., Patel, B.Y. & Jadeja, K.A., (2017). Synthesis and antimicrobial studies of 1,2,3,4-tetrahydropyrimidine bearing imidazole analogues. Indian. J. Chem., 2017, 56B, 438–446. http://nopr.niscair.res.in/handle/123456789/41188.
  9. 9. Chérouvrier, J.R., Carreaux, F. & Bazureau, J.P., (2004). Reactivity of 2-Thiohydantoins Towards Various Electrophilic Reagents: Applications to the Synthesis of New 2-Ylidene-3,5-dihydro-4H-imidazol-4-ones. Molecules, 9(10), 867–875. DOI: 10.1002/chin.200306129.10.1002/chin.200306129
  10. 10. Khodair, A.I., El-Subbagh, H.I., El-Emam, A.A. (1997). Synthesis of certain 5-substituted 2-thiohydantoin derivatives as potential cytotoxic and antiviral agents. Boll Chim Farm, 136, 561–567. Molecules 2006, 11 749.
  11. 11. Wang, Z.D., Sheikh, S.O., Zhang, Y. (2006). A Simple Synthesis of 2-Thiohydantoins. Molecules, 11, 739–750. DOI: 10.3390/11100739.10.3390/11100739614850817971750
  12. 12. Takahashi, A., Matsuoka, H., Ozawa, Y. & Uda, Y. (1998). Antimutagenic Properties of 3,5-Disubstituted 2-Thiohydantoins. J. Agric. Food Chem., 46, 5037–5042. DOI:10.1021/jf980430x;
  13. 13. Froelich, E.; Fruehan, A.; Jackman, M.; Kirchner, F.K.; Alexander, E.J.; Archer, S. (1954). 5-Heptyl-2-Thiohydantion, A New Antitubercular Agent. J. Am. Chem. Soc. 1954, 76, 3099–3100. DOI: 10.1021/ja01640a088.10.1021/ja01640a088
  14. 14. Al-Obaid, A.M.; El-Subbagh, H.I.; Khodair, A.I. & Elmazar, M.M. (1996). 5-substituted-2-thiohydantoin analogs as a novel class of antitumor agents. Anticancer Drugs, 7, 873. DOI: 10.1097/00001813-199611000-00009.10.1097/00001813-199611000-00009
  15. 15. Lacroix, G., Bascou, J.-P., Perez, J. & Gadras, A.U.S. Pat. 6,018,052, 2000;
  16. 16. Lacroix, G., Bascou, J.P., Perez, J. & Gadras, A.U.S. Pat. 5,650,519, 1997;
  17. 17. Marton, J., Enisz, J., Hosztafi, S. & Timar, T.J. Agric. (1993). Preparation and Fungicidal Activity of 5-Substituted Hydantoins and Their 2-Thio Analogs. Food Chem., 41, 148–152. DOI: 10.1021/jf00025a031.10.1021/jf00025a031
  18. 18. El-Barbary, A.A., Khodair, A.I., Pedersen, E.B. & Nielsen, C.J. (1994). S-Glucosylated hydantoins as new antiviral agents. Med. Chem., 37, 73–77. DOI: 10.1021/jm00027a009.10.1021/jm00027a009
  19. 19. Tompkins, J.E. (1986). 5,5-Diaryl-2-thiohydantoins and 5,5-diaryl N3-substituted 2-thiohydantoins as potential hypolipidemic agents. J. Med. Chem., 29, 855–589. DOI: 10.1021/jm00155a042.10.1021/jm00155a042
  20. 20. Elwood, J.C., Richert, D.A. & Westerfeld, W.W. (1972). A comparison of hypolipidemic drugs in the prevention of an orotic acid fatty liver. Biochem. Pharmacol., 21, 1127–1132. DOI: 10.1016/0006-2952(72)90106-2.10.1016/0006-2952(72)90106-2
  21. 21. Marx, J.V., Richert, D.A. & Westerfeld, W.W. (1970). Peripheral inhibition of thyroxine by thiohydantoins derived from amino acids. J. Med. Chem. 1970, 13, 1179–1181. DOI: 10.1021/jm00300a036.10.1021/jm00300a0365479861
  22. 22. Cheymol, J., Chabrier, P., Gay, Y. & Lavedan, J.P. (1951). [Inhibitory action on thyroid & molecular structure; 2. study of dithiocarbamates & their derivatives]. Arch. Int. Pharmacodyn. Ther. 1951, 88, 342–350.
  23. 23. Cheymol, J., Chabrier, P. & Gay, Y., Arch. (1951). [Antithyroid action and molecular structure. I. A study of thiohydantoins and their methyl esters]. Int. Pharmacodyn. Ther. 1951, 87, 321–323. DOI: 10.1042/bj0490125.10.1042/bj0490125119746514848040
  24. 24. Archer, S., Unser, M.J. & Froelich, E. (1956). Some 5-(Oxoalkyl)-2-thiohydantoins and Their Derivatives. J. Am. Chem. Soc. 1956, 78, 6182. DOI: 10.1021/ja01604a064.10.1021/ja01604a064
  25. 25. Curran, A.C.W.U.S. Pat. 3,984,430, 1976.
  26. 26. Nagpal, K.L.U.S. Pat. 4,473,393, 1984.
  27. 27. Mo, B., Li, J. & Liang, S. (1997). A method for preparation of amino acid thiohydantoins from free amino acids activated by acetyl chloride for development of protein C-terminal sequencing. Anal. Biochem., 249(1), 207–211. DOI: 10.1006/abio.1997.2156.10.1006/abio.1997.21569212872
  28. 28. Cromwellt, L.D., Stark, G.R. (1969). Determination of the carboxyl termini of proteins with ammonium thiocyanate and acetic anhydride, with direct identification of the thiohydantoins. Biochemistry, 8, 4735–4740. DOI: 10.1021/bi00840a012,.10.1021/bi00840a0124904040
  29. 29. Nelson, J.V., Helber, M.J. & Brick, M.C.U.S. Pat. 5,695,917, 1997.
  30. 30. Ooi, T., Fukui, T., Kobayashi, M., Ueno, K., Kagami, K., Suzuki, M. & Nishino, K.U.S. Pat. 5,482,814, 1996.
  31. 31. Kandil, S.S., El-Hefnawy, G.B. & Baker, E.A. (2004). Thermal and spectral studies of 5-(phenylazo)-2-thiohydantoin and 5-(2- hydroxyphenylazo)-2-thiohydantoin complexes of cobalt(II), nickel(II) and copper(II). Thermochim. Acta, 414, 105–113. DOI: 10.1016/j.tca.2003.11.021.10.1016/j.tca.2003.11.021
  32. 32. Verma, S., Shrivastva, S. & Rani, P. (2012). Synthesis and spectroscopic studies of mixed ligand complexes of transition and inner transition metals with a substituted benzimidazole derivative and RNA bases. J. Chem. Pharm. Res., 2012, 4(1), 693–699.
  33. 33. Usharani, M., Akila, E. & Rajavel, R. (2012). Mixed ligand Schiff base complexes: synthesis, spectral characterization and antimicrobial activity. J. Chem. Pharm. Res., 2012, 4(1), 726–731.
  34. 34. Andrade, A., Namora, S.F. & Woisky, RG., (2000). Synthesis and characterization of a diruthenium–ibuprofenato complex: Comparing its anti-inflammatory activity with that of a copper(II)–ibuprofenato complex. J. Inorg. Biochem., 81, 23–27. DOI: 10.1016/S0162-0134(00)00106-9.10.1016/S0162-0134(00)00106-9
  35. 35. Ray, S.M. & Lahiri, S.C. (1990). Some reflections on “Future organizational trends of the ASA. J. Indian Chem. Soc., 67, 324–326. DOI: 10.1007/BF02691840.10.1007/BF02691840
  36. 36. Mathew, M., Palenik, G.J. & Clark, G.R. (1973). Crystal and molecular structures of chlorobis(acetone thiosemicarba-zone)nickel(II) chloride monohydrate and nitratobis(acetone thiosemicarbazone)nickel(II) nitrate monohydrate. Inorg. Chem., 12(2), 446–451. DOI: 10.1021/ic50120a041.10.1021/ic50120a041
  37. 37. Arya, P., Singh, N., Gadi, R. & Chandra, S. (2010). Preparation, characterization and antiulcer activity of mixed ligand complex of Zn (II) with Famotidine and Glycine. J. Chem. Pharm. Res., 2(6), 253–257.
  38. 38. Hughes, M.N., Wilkinson, G., Gillard, R.D. & McCleverty, J.A. Comprehensive Coordination Chemistry, Vol 6, Pergamon Press, Oxford, 1987.
  39. 39. Raman, M., Muthuraj, P.V., Ravichandran, S. & Kulandaisamy, A., (2003). Synthesis, characterisation and electrochemical behaviour of Cu(II), Co(II), Ni(II) and Zn(II) complexes derived from acetylacetone andp-anisidine and their antimicrobial activity. Acad. Sci (Chem. Sci.), 2003, 115(3), 161–167. https://www.ias.ac.in/article/fulltext/jcsc/115/03/0161-0167.
  40. 40. Bauer, A.W., Kirby, W.M., Sherris, C. & Turck, M. (1966). Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Amer. J. Clinical Pathology., 45, 493. DOI: 10.1093/ajcp/45.4_ts.493.10.1093/ajcp/45.4_ts.493
  41. 41. Pfaller, M.A., Burmeister, L., Bartlett, M.A. & Rinaldi, M.G., (1988). Multicenter evaluation of four methods of yeast inoculum preparation. J. Clin. Microbiol. 26 (1988) 1437–1441.
  42. 42. National Committee for Clinical Laboratory Standards, Performance Vol. antimicrobial susceptibility of Flavobacteria, 1997.
  43. 43. National Committee for Clinical Laboratory Standards. 1993. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A3. National Committee for Clinical Laboratory Standards, Villanova, Pa.
  44. 44. NakamotoK, Infra-Red Spectra of Inorganic and Coordinated Compounds, John Wiley, New York (1963) p. 167.
  45. 45. Randall, H.M., Fowler, R.G., Fuson, N. & Dangl, J.R. Infrared Determination of Organic Structures. D. Van Nostrand, New York (1949).
  46. 46. Lever, A.B.P., Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1968.
  47. 47. Lever, A.B.P. & Mantovani, E. (1971). Far-infrared and electronic spectra of some bis(ethylenediamine) and related complexes of copper(II) and the relevance of these data to tetragonal distortion and bond strengths. Inorg. Chem., 1971, 10, 817–826. DOI: 10.1021/ic50098a031.
  48. 48. Drago., R.S., Physical Methods in Inorganic Chemistry, Rein Hold Publishing Corporation, New York (1976) p. 395.
Language: English
Page range: 1 - 9
Published on: Oct 14, 2021
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Abeer M. Alosaimi, Hosam A. Saad, Moamen S. Refat, Ghaferah H. Al-Hazmi, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.