Have a personal or library account? Click to login
Synthesis, computational, anticancerous and antiproliferative effects of some copper, manganese and zinc complexes with ligands derived from symmetrical 2,2’-diamino-4,4’-dimethyl-1,1’-biphenyl-salicylaldehyde Cover

Synthesis, computational, anticancerous and antiproliferative effects of some copper, manganese and zinc complexes with ligands derived from symmetrical 2,2’-diamino-4,4’-dimethyl-1,1’-biphenyl-salicylaldehyde

Open Access
|May 2021

References

  1. 1. Costes, J.P., Dahan, F., Fernandez, M.B.F., Garcia, M.I.F., Deibe, A.M.G. & Sanmartin, J. (1998). General synthesis of ‘salicylaldehyde half-unit complexes’: structural determination and use as synthon for the synthesis of dimetallic or trimetallic complexes and of ‘self-assembling ligand complexes’. Inorg. Chim. Acta. 274(1), 73–81. DOI: 10.1016/S0020-1693(97)05991-4.10.1016/S0020-1693(97)05991-4
  2. 2. Dalia, S.F., Afsan, F., Hossain, M.S., Khan, M.N., Zakaria, C., Kudrat-E-Zahan, M. & Ali, M.H. (2018). A short review on chemistry of Schiff base metal complexes and their catalytic application. Int. J. Chem. Stud. 6(3), 2859–2866.
  3. 3. Kumar, S., Dhar, D.N. & Saxena, P.N. (2009). Applications of metal complexes of Schiff bases-A review. J. Sci. Ind. Res. India. 68(3), 181–187.
  4. 4. Nishinaga, A., Yamada, T., Fujisawa, H., Ishizaki, K., Ihara, H. & Matsuura, T. (1988) Catalysis of cobalt-Schiff base complexes in oxygenation of alkenes: on the mechanism of ketonization. J. Mol. Catal. 48, 249–264. DOI: 10.1016/0304-5102(88)85009-0.10.1016/0304-5102(88)85009-0
  5. 5. Sabaa, M.W., Mohamed, R.R. & Oraby, E.H. (2009). Vanillin–Schiff’s bases as organic thermal stabilizers and co--stabilizers for rigid poly(vinyl chloride). Eur. Polym. J. 45(11), 3072-3080. DOI: 10.1016/j.eurpolymj.2009.08.018.10.1016/j.eurpolymj.2009.08.018
  6. 6. Tunçel, M. & Serin, S. (2006). Synthesis and characterization of new azo-linked Schiff bases and their cobalt(II), copper(II) and nickel(II) complexes. Transit. Met. Chem. 31, 805–812. DOI: 10.1007/s11243-006-0074-5.10.1007/s11243-006-0074-5
  7. 7. Pandeya, S.N., Sriram, D., Nath, G. & De Clercq, E. (1999). Synthesis, antibacterial, antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin derivatives with 3-amino--2-methylmercapto quinazolin-4(3H)-one. Pharm. Acta. Helv. 74(1), 11–17. DOI: 10.1016/s0031-6865(99)00010-2.10.1016/S0031-6865(99)00010-2
  8. 8. Kelley, J.L., Linn, J.A., Bankston, D.D., Burchall, C.J., Soroko, F.E. & Cooper, B.R. (1995). 8-Amino-3-benzyl-1,2,4--triazolo[4,3-a]pyrazines. Synthesis and anticonvulsant activity. J. Med. Chem. 38(18), 3676–3679. DOI: 10.1021/jm00018a029.10.1021/jm00018a0297658456
  9. 9. Pavan, F.R., Maia, P., Leite, S.R.A., Deflon, V.M., Batista, A.A., Sato, D.N., Franzblau, S.G. & Leite, C.Q.F. (2010). Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: anti-mycobacterium tuberculosis activity and cytotoxicity. Eur. J. Med. Chem. 45(5), 1898–1905. DOI: 10.1016/j.ejmech.2010.01.028.10.1016/j.ejmech.2010.01.02820163897
  10. 10. Upadhyay, K.K., Kumar, A., Upadhyay, S. & Mishra, P.C. (2008). Synthesis, characterization, structural optimization using density functional theory and superoxide ion scavenging activity of some Schiff bases. J. Mol. Struct. 873, 5–16. DOI: 10.1016/j.molstruc.2007.02.031.10.1016/j.molstruc.2007.02.031
  11. 11. Dutta, B., Some, S. & Ray, J.K. (2006). Thermal cyclization of 3-arylamino-3-(2-nitrophenyl)-propenal Schiff base hydrochlorides followed by triethyl phosphite mediated deoxygenation: a facile synthesis of quindolines. Tetrahedron Lett. 47(3), 377–379. DOI: 10.1016/j.tetlet.2005.11.007.10.1016/j.tetlet.2005.11.007
  12. 12. Chandramouli, Shivanand, M.R., Nayanbhai, T.B., Bheemachari & Udupi, R.H. (2012). Synthesis and biological screening of certain new triazole Schiff bases and their derivatives bearing substituted benzothiazole moiety. J. Chem. Pharm. Res. 4(2), 1151–1159.
  13. 13. Chinnasamy, R.P., Sundararajan, R. & Govindaraj, S. (2010). Synthesis, characterization, and analgesic activity of novel Schiff base of isatin derivatives. J. Adv. Pharm. Tech. Res. 1(3), 342–347. DOI: 10.4103/0110-5558.72428.10.4103/0110-5558.72428325541022247869
  14. 14. Chaubey, A.K. & Pandeya, S.N. (2012). Synthesis & anticonvulsant activity (chemo shock) of Schiff and Mannich bases of isatin derivatives with 2-amino pyridine (mechanism of action). Int. J. Pharmtech Res. 4(2), 590–598.
  15. 15. Aboul-Fadl, T., Mohammed, F.A. & Hassan, E.A. (2003). Synthesis, antitubercular activity and pharmacokinetic studies of some Schiff bases derived from 1-alkylisatin and isonicotinic acid hydrazide (INH). Archiv. Pharm. Res. 26(10), 778–784. DOI: 10.1007/BF02980020.10.1007/BF02980020
  16. 16. Miri, R., Razzaghi-asl, N. & Mohammadi, M.K. (2013). QM study and conformational analysis of an isatin Schiff base as a potential cytotoxic agent. J. Mol. Mod. 19(2), 727–735. DOI: 10.1007/s00894-012-1586-x.10.1007/s00894-012-1586-x
  17. 17. Avaji, P.G., Kumar, C.H.V., Patil, S.A., Shivananda, K.N. & Nagaraju, C. (2009). Synthesis, spectral characterization, in-vitro microbiological evaluation and cytotoxic activities of novel macrocyclic bis hydrazine. Eur. J. Med. Chem. 44(9), 3552–3559. DOI: 10.1016/j.ejmech.2009.03.032.10.1016/j.ejmech.2009.03.032
  18. 18. Rao, S.N., Kathale, N., Rao, N.N. & Munshi, K.N. (2007). Catalytic air oxidation of olefins using molybdenum dioxo complexes with dissymmetric tridentate O,N,S-donor Schiff base ligands derived from o-hydroxyacetophenone and S-benzyldithiocarbazate or S-methyldithiocarbazate. Inorg. Chim. Acta. 360(14), 4010–4016. DOI: 10.1016/j.ica.2007.05.035.10.1016/j.ica.2007.05.035
  19. 19. Iwakura, I., Ikeno, T. & Yamada, T. (2004). Proposal for the metallacycle pathway during the cyclopropanation catalyzed by cobalt−Schiff base complexes. Org. Lett. 6(6), 949–952. DOI: 10.1021/ol036505m.10.1021/ol036505m
  20. 20. Nishinaga, A., Yamada, T., Fujisawa, H., Ishizaki, K., Ihara, H. & Matsuura, T. (1988). Catalysis of cobalt-Schiff base complexes in oxygenation of alkenes: on the mechanism of ketonization. J. Mol. Catal. 48, 249–264. DOI: 10.1016/0304-5102(88)85009-0.10.1016/0304-5102(88)85009-0
  21. 21. Al-Shboul, T.M.A., Ziemann, S., Görls, H., Jazzazi, T.M.A., Krieck, S. & Westerhausen, M. (2018). Synthesis of dipotassium 2,2′-bis(2-oxidobenzylideneamino)-4,4′-dimethyl-1,1′-biphenyl derivatives and use as ligand transfer reagent. Eur. J. Inorg. Chem. 2018(14), 1563–1570. DOI: 10.1002/ejic.201701472.10.1002/ejic.201701472
  22. 22. Al-Shboul, T.M.A., Ziemann, S., Görls, H., Krieck, S. & Westerhausen, M. (2019). Substituted 2,2′-bis(2-oxidobenzylideneamino)-4,4′-dimethyl-1,1′-biphenyl complexes of zinc. Z. Anorg. Allg. Chem. 645(3), 292–300. DOI: 10.1002/zaac.201800404.10.1002/zaac.201800404
  23. 23. Jazzazi, T.M.A., Ababneh, T.S. & Abboushi, E.K. (2019). Zinc(II) complexes of symmetrical tetradentate Schiff base ligands derived from 2,2’-diamino-6,6’-dibromo-4,4’-dimethyl-1,1’-biphenyl-salicylaldehyde: synthesis, characterization and computational study. Jordan J. Chem.14(2), 81–87.
  24. 24. Carlin, R.B. & Foltz, G.E. (1956). Ullmann synthesis of six dimethyldinitrobiphenyls and their reduction to the corresponding diaminodimethylbiphenyls. J. Am. Chem. Soc. 78(9), 1997–2000. DOI: 10.1021/ja01590a065.10.1021/ja01590a065
  25. 25. Spartan’18 Wavefunction. Inc. Irvine, CA.
  26. 26. Becke, A.D. (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5652. DOI: 10.1063/1.464913.10.1063/1.464913
  27. 27. Becke, A.D. (1996). Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J. Chem. Phys. 104(3), 1040–1046. DOI: 10.1063/1.470829.10.1063/1.470829
  28. 28. Lee, C., Yang, W. & Parr, RG. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37(2), 785–789. DOI: 10.1103/PhysRevB.37.785.10.1103/PhysRevB.37.785
  29. 29. Petersson, G.A., Bennett, A., Tensfeldt, T.G., Al-Laham, M.A & Shirley, W.A. (1988). A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 89(4), 2193–2218. DOI: 10.1063/1.455064.10.1063/1.455064
  30. 30. Petersson, G.A., Tensfeldt, T.G. & Montgomery, J.A. (1991). A complete basis set model chemistry. III. The complete basis setquadratic configuration interaction family of methods. J. Chem. Phys. 94(9), 6091–6101. DOI: 10.1063/1.460448.10.1063/1.460448
  31. 31. Talib, W.H. (2017). Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Sci. Pharm. 85(3), 27. DOI: 10.3390/scipharm85030027.10.3390/scipharm85030027562051528671634
  32. 32. Jayaseelan, P., Prasad, S., Vedanayaki, S. & Rajavel, R. (2016). Synthesis, characterization, anti-microbial, DNA binding and cleavage studies of Schiff base metal complexes. Arab. J. Chem. 9, 668–677. DOI: 10.1016/j.arabjc.2011.07.029.10.1016/j.arabjc.2011.07.029
  33. 33. Yousif, E., Majeed, A., Al-Sammarrae, K., Salih, N., Salimon, J. & Abdullah, B. (2017). Metal complexes of Schiff base: Preparation, characterization and antibacterial activity. Arab. J. Chem. 10, 1639–1644. DOI: 10.1016/j.arabjc.2013.06.006.10.1016/j.arabjc.2013.06.006
  34. 34. Thaker, B.T., Surati, K.R., Oswal, S., Jadeja, R.N. & Gupta, V.K. (2007). Synthesis, spectral, thermal and crystal-lographic investigations on oxovanadium(IV) and manganese(III) complexes derived from heterocyclic β-diketone and 2-amino ethanol. Struct. Chem. 18, 295–310. DOI: 10.1007/s11224-006-9134-x.10.1007/s11224-006-9134-x
  35. 35. Miessler, G. & Tarr, D. (2005). Inorganic Chemistry (3rd ed). New Jersey, USA: Pearson Prentice-Hall.
  36. 36. Ababneh, T.S., Al-Shboul, T.M.A., Jazzazi, T.M.A., Alomari, M.I., Görls, H. & Westerhausen, M. (2020). Crystallo-graphic and computational study of the structure of copper(II) 2,2′-bis(2-oxidobenzylideneamino)-4,4′-dimethyl-1,1′-biphenyl. Transit. Met. Chem. 45. DOI: 10.1007/s11243-020-00395-810.1007/s11243-020-00395-8
  37. 37. Cheeseman, T.P., Hall, D. & Waters, T.N. (1966). The colour isomerism and structure of some copper co-ordination compounds. Part XII. The crystal structure of NN′-(2,2′-biphenyl)bis(salicylaldiminato)copper(II). J. Chem. Soc. A 1396–1406. DOI: 10.1039/J19660001396.10.1039/J19660001396
  38. 38. Taha, Z.A., Ajlouni, A.M., Ababneh, T.S., Al-Momani, W., Hijazi, A.K., Al Masri, M. & Hammad, H. (2017). DFT computational studies, biological and antioxidant activities, and kinetic of thermal decomposition of 1,10-phenanthroline lanthanide complexes. Struct. Chem. 28, 1907–1918. DOI: 10.1007/s11224-017-0975-2.10.1007/s11224-017-0975-2
Language: English
Page range: 7 - 15
Published on: May 5, 2021
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Taher S. Ababneh, Mohammad El-Khateeb, Aissar K. Tanash, Tareq M.A. AL-Shboul, Mohammad Jamal A. Shammout, Taghreed M.A. Jazzazi, Mohammad Alomari, Safa Daoud, Wamidh H. Talib, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.