1. Shudo, T. & Takahashi, T. (2004). Influence of Reformed Gas Composition on HCCI Combustion Engine System fueled with DME and H2-CO-CO2 which are Onboard-reformed from Methanol Utilizing Engine Exhaust Heat. JSME Internat. J. 70(698), 2663–2669. DOI: 10.1299/kikaib.70.2663.
2. Shudo, T. (2006). An HCCI combustion engine system using on-board reformed gases of methanol with waste heat recovery: ignition control by hydrogen. Int. J. Vehicle Des. 41(1–4), 206–226. DOI: 10.1504/IJVD.2006.009669.
3. Li, H.L. & Karim, G.A. (2005). Exhaust emissions from an SI engine operating on gaseous fuel mixtures containing hydrogen. Int. J. Hydrogen. Energ. 30(13–14), 1491–1499. DOI: 10.1016/j.ijhydene.2005.05.007.
4. Tutak, W., Jamrozik, A. & Grab-Rogalinski, K. (2020). Effect of natural gas enrichment with hydrogen on combustion process and emission characteristic of a dual fuel diesel engine. Int. J. Hydrogen. Energ. 1(119), 901–910. DOI: 10.1016/j.ijhydene.2020.01.080.
5. D’Andrea, T., Henshaw, P., Ting, D.S.K. (2004). The addition of hydrogen to a gasoline-fuelled SI engine. Int. J. Hydrogen Energ. 29(14), 1541–1552. DOI: 10.1016/j.ijhydene.2004.02.002.
9. Feng, S.Q. (2017). Numerical Study of the Performance and Emission of a Diesel-Syngas Dual Fuel Engine. Math. Probl. Eng. (21), 1–12. DOI: 10.1155/2017/6825079.
11. Lu, T.F. & Law, C.K., (2008). A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry. Combust. Flame 154(4), 761–774. DOI: 10.1016/j.combustflame.2008.04.025.
13. Wu, Z.Z., Qiao, X.Q. & Huang, Z.(2013). A criterion based on computational singular perturbation for the construction of reduced mechanism for dimethyl ether oxidation. J. Serb. Chem. Soc. 78(8), 1177–1188. DOI: 10.2298/JSC121122023W.
14. Treviño, C. & Méndez, F. (1991). Asymptotic analysis of the ignition of hydrogen by a hot plate in a boundary layer flow. Combust. Sci. Technol. 78(4–6), 197–216. DOI: 10.1080/00102209108951749.
15. Lu, T.F. & Law, C.K. (2006). Linear time reduction of large kinetic mechanisms with directed relation graph: n-Heptane and iso-octane. Combust. Flame 144(1–2), 24–36. DOI: 10.1016/j.combustflame.2005.02.015.
20. Luo, Z.Y., Plomer, M., Lu, T.F., Som, S. & Longman, D.E. (2012). A reduced mechanism for biodiesel surrogates with low temperature chemistry for compression ignition engine applications. Combust. Theory Model. 99(2), 143–153. DOI: 10.1080/13647830.2011.631034.
22. Lu, T.F. & Law, C.K. (2006). On the applicability of directed relation graphs to the reduction of reaction mechanisms. Combust. Flame 146(3), 472–483. DOI: 10.1016/j.combustflame.2006.04.017.
24. Kumar, K., Freeh, J.E., Sung, C.J. & Huang, Y. (2007). Laminar Flame Speeds of Preheated iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures. J. Propul. Power 23(2), 428–436. DOI: 10.2514/1.24391.
25. Kumar, R., Singhal, A., Katoch, A. & Kumar, S. (2020). Experimental Investigations on Laminar Burning Velocities of n-Heptane+ Air Mixtures at Higher Mixture Temperatures Using Externally Heated Diverging Channel Method. Energy Fuels 34(2), 2405–2416. DOI: 10.1021/acs.energyfuels.9b04249.