1. Zeng, J.X., Ye, H.Q., Huang, N.D., Liu, J.F. & Zheng, L.F. (2009). Selective separation of Hg(II) and Cd(II) from aqueous solutions by complexation-ultrafiltration process. Chemosphere 76(5), 706–710. DOI: 10.1016/j.chemosphere.2009.05.019.
2. Chew, C.M., Aroua, M.K. & Hussain, M. A. (2018). Advanced process control for ultrafiltration membrane water treatment system. J. Cleaner Prod. 179, 63–80. DOI: 10.1016/j.jclepro.2018.01.075.
3. Baharuddin, N.H., Sulaima n, N.M.N. & Aroua, M.K. (2015). Removal of zinc and lead ions by polymer-enhanced ultrafiltration using unmodified starch as novel binding polymer. Internat. J. Environ. Science Technol. 12(6), 1825–1834. DOI: 10.1007/s13762-014-0549-4.
4. Desai, K.R. & Murthy, Z.V.P. (2014). Removal of Ag(I) and Cr(VI) by Complexation-Ultrafiltration and Characterization of the Membrane by CFSK Model. Separ. Sci. Technol. 49(17), 2620–2629. DOI: 10.1080/01496395.2012.690486.
5. Abbasi-Garravand, E. & Mulligan, C.N. (2014). Using micellar enhanced ultrafiltration and reduction techniques for removal of Cr(VI) and Cr(III) from water. Separ. Purific. Technol. 132(34), 505–512. DOI: 10.1016/j.seppur.2014.06.010.
7. Qiu, Y.R., Mao, L.J. & Wang, W.H. (2014). Removal of manganese from waste water by complexation–ultrafiltration using copolymer of maleic acid and acrylic acid. Transactions of Nonferrous Metals Society of China, 24(4), 1196–1201. DOI: 10.1016/S1003-6326(14)63179-4.
8. Huang, Y., Wu, D., Wang, X., Huang, W., L awless, D. & Feng, X.S. (2016). Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation. Separ. Purific. Technol. 158(6), 124–136. DOI: 10.1016/j.seppur.2015.12.008.
9. Malamis, S., Katsou, E., Kosanovic, T. & Haralambous, K.J. (2012). Combined adsorption and ultrafiltration processes employed for the removal of pollutants from metal plating wastewater. Separ. Sci. Technol. 47(7), 983–996. DOI: 10.1080/01496395.2011.645983.
10. Chavan, M. (2015). Mathematical modelling for removal of mixture of heavy metal ions from waste-water using micellar enhanced ultrafiltration (MEUF) process. Separ. Sci. Technol. 50(3), 365–372. DOI: 10.1080/01496395.2014.973515.
14. Khalid, M., Usman, M., Siddiq, M., Rasool, N., Saif, M.J., Imran, M. & Rana, U. A. (2015). Removal of Ni(II) from aqueous solution by using micellar enhanced ultrafiltration. Water Sci. Technol. A: J. Internat. Associ. Water Pollut. Res. 72(6), 946–951. DOI: 10.2166/wst.2015.216.
15. Chavan, M. (2015). Mathematical modelling for removal of mixture of heavy metal ions from waste-water using micellar enhanced ultrafiltration (MEUF) process. Separ. Sci. Technol. 50(3), 365–372. DOI: 10.1080/01496395.2014.973515.
16. Jana, S., Saikia, A., Purka it, M.K. & Mohantya, K. (2011). Chitosan based ceramic ultrafiltration membrane: Preparation, characterization and application to remove Hg(II) and As(III) using polymer enhanced ultrafiltration. Chem. Engin. J. 170(1), 209–219. DOI: 10.1016/j.cej.2011.03.056.
17. Karat e, V.D. & Marathe, K.V. (2008). Simultaneous removal of nickel and cobalt from aqueous stream by cross flow micellar enhanced ultrafiltration. J. Hazard. Mater. 157(2), 464–471. DOI: 10.1016/j.jhazmat.2008.01.013.
18. Korus, I. & Loska, K. (2009). Removal of Cr(III) and Cr(VI) ions from aqueous solutions by means of polyelectrolyte-enhanced ultrafiltration. Desalination 247(1–3), 390–395. DOI: 10.1016/j.desal.2008.12.036.
19. Khosa, M.A., Shah, S.S. & Feng, X. (2014). Metal sericin complexation and ultrafiltration of heavy metals from aqueous solution. Chem. Engin. J. 244(10), 446–456. DOI: 10.1016/j.cej.2014.01.091.
23. Wang, W. & Wang, A. (2010). Nanocomposite of carboxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: Synthesis, characterization and properties. Carbohyd. Polym. 82(1), 83–91. DOI: 10.1016/j.carbpol.2010.04.026.
25. Lam, B., Déon, S., Morin-Crini, N., Crini, G. & Fievet, P. (2018). Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. J. Cleaner Prod. 171, 927–933. DOI: 10.1007/s10311-018-00818-0.
27. Cañizares, P., Pérez, A., Camarillo, R. & Mazarrob, R. (2008). Simultaneous recovery of cadmium and lead from aqueous effluents by a semi-continuous laboratory-scale polymer enhanced ultrafiltration process. J. Membrane Sci. 320(1–2), 520–527. DOI: 10.1016/j.memsci.2008.04.043.
29. Yu, J.H., Chou, Y.H., Liang, Y.M. & Li, C.W. (2015). Integration of polyelectrolyte enhanced ultrafiltration and chemical reduction for metal-containing wastewater treatment and metal recovery. Water Sci. Technol. 72(7), 1096–101. DOI: 10.2166/wst.2015.315.
32. Zamariotto, D., Lakard, B., Fieve t, P. & Fatin-Rouge, N. (2010). Retention of Cu(II)-and Ni(II)-polyaminocarboxylate complexes by ultrafiltration assisted with polyamines. Desalination 258(1), 87–92. DOI: 10.1016/j.desal.2010.03.040.
33. Mbareck, C., Nguyen, Q.T., Alaoui, O.T. & Barillier, D. (2009). Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water. J. Hazard. Mater. 171(1), 93–101. DOI: 10.1016/j.jhazmat.2009.05.123.
36. Sekulić, Z., Antanasijević, D., Stevanović, S. & Trivunac, K. (2019). The prediction of heavy metal permeate flux in complexation-microfiltration process: polynomial neural network approach. Water Air Soil Pollution 230(1), 23–45. DOI: 10.1007/s11270-018-4072-y.
37. Yeh, H.M., (2013), Mass transfer in cross-flow parallel-plate dialyzer with internal recycle for improved performance. Membrane Water Treatment. 4(4), 251–263. DOI: 10.1080/00986445.2011.560517.