Have a personal or library account? Click to login
Technological aspects of synthesis of poly(ethylene glycol) mono-1-propenyl ether monomers Cover

Technological aspects of synthesis of poly(ethylene glycol) mono-1-propenyl ether monomers

Open Access
|Oct 2020

References

  1. 1. Fink, J.K. (2013). Reactive polymers fundamentals and applications. A concise guide to industrial polymers (2nd ed.) New York: William Andrew Inc;.
  2. 2. Wicks, Z.W., Jones, F.N., Pappas, S.P. & Wicks, D.A. (2007). Organic Coatings: Sci. Technol. (3rd ed.) New Jork: Wiley-Interscience.10.1002/047007907X
  3. 3. Mishra, M. & Yagci, Y. (2009). Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology (2nd ed.) New York: CRC Press Taylor & Francis Group.
  4. 4. Crivello, J. & Jo, K. (1993). Propenyl ethers. I. The synthesis of propenyl ether monomers. J. Polym. Sci. Part A: Polym. Chem. 31, 1473–1482. DOI: 10.1002/pola.1993.080310616.10.1002/pola.1993.080310616
  5. 5. Behr, A. & Neubert, P. (2012). Appl. Homogen. Catal. (1st ed.) Weinheim: Wiley-VCH.
  6. 6. McGrath, D.V. & Grubbs, R.H. (1994). The mechanism of aqueous ruthenium(II)-catalyzed olefin isomerization. Organometallics 13, 224–235. DOI: 10.1021/om00013a035.10.1021/om00013a035
  7. 7. Kuźnik, N. & Krompiec, S. (2007). Transition metal complexes as catalysts of double-bond migration in O-allyl systems. Coord. Chem. Rev. 251, 222–233. DOI: 10.1016/j. ccr.2006.07.006.
  8. 8. Krompiec, S., Antoszczyszyn, M., Urbala, M. & Bieg, T. (2000). Isomerization of Allyl Ethers of Diols and Triols Catalyzed by Ruthenium Complexes. Pol. J. Chem. 74, 737–739. DOI: 10.1002/chin.200034023.10.1002/chin.200034023
  9. 9. Krompiec, S., Kuźnik, N., Urbala, M. & Rzepa, J. (2006). Isomerization of Alkyl Allyl and Allyl Silyl ethers catalysed by ruthenium complexes. J. Mol. Catal. A: Chem. 248, 198–209. DOI: 10.1016/j.molcata.2005.12.022.10.1016/j.molcata.2005.12.022
  10. 10. Urbala, M., Kuźnik, N., Krompiec, S. & Rzepa, J. (2004). Highly Selective Isomerization of Allyloxyalcohols to Cyclic Acetals or 1-Propenyloxyalcohols. Synlett. 7, 1203–1026. DOI: 10.1055/s-2004-825597.10.1055/s-2004-825597
  11. 11. Urbala, M. (2005). The study on the reaction of 4-ally-loxybutane-1-ol with ruthenium (II) complexes. Pol. J. Chem. Technol. 7, 48–50.
  12. 12. Urbala, M., Krompiec, S., Penkala, M., Danikiewicz, W. & Grela, M. (2013). Solvent-free Ru-catalyzed isomerization of allyloxyalcohols: methods for highly selective synthesis of 1-propenyloxyalcohols. Appl. Catal. A Gen. 451, 101–111. DOI: 10.1016/j.apcata.2012.11.009.10.1016/j.apcata.2012.11.009
  13. 13. Urbala, M. (2010). The effectiveness of ruthenium(II) complexes and ruthenium trichloride as pre-catalysts in solvent-free isomerization of model alkyl allyl ether. Appl. Catal. A Gen. 377, 27–34. DOI: 10.1016/j.apcata.2010.01.010.10.1016/j.apcata.2010.01.010
  14. 14. Urbala, M. (2015). Solvent-free [Ru]-catalyzed isomerization of allyl glycidyl ether: The scope, effectiveness and recycling of catalysts, and exothermal effect. Appl. Catal. A Gen. 505, 382–393. DOI: 10.1016/j.apcata.2015.08.012.10.1016/j.apcata.2015.08.012
  15. 15. Martysz, D., Urbala, M., Antoszczyszyn, M. & Pilawka, R. (2002). l-Propenyl ethers of butanediol as effective modifiers of UV-cured epoxy coatings in cationic polymerization. Polimery. 11–12, 849–851. DOI: 10.14314/polimery.2002.849.10.14314/polimery.2002.849
  16. 16. Martysz, D., Antoszczyszyn, M., Urbala, M., Krompiec, S. & Fabrycy, E. (2003). Synthesis of 1-propenyl ethers and their using as modifiers of UV-cured coatings in radical and cationic polymerization. Prog. Org. Coat. 46, 302–311. DOI: 10.1016/S0300-9440(03)00018-3.10.1016/S0300-9440(03)00018-3
  17. 17. Czech, Z., Urbala, M. & Martysz, D. (2004). New generation of cationically UV-cured epoxy adhesives containing dyes. Polimery 7–8, 561–564. DOI: 10.14314/polimery.2004.561.10.14314/polimery.2004.561
  18. 18. Czech, Z. & Urbala, M. (2004). Application of novel unsaturated organosilane ethers in cationic UV-crosslinkable acrylic PSA systems. Polimery 11–12, 837–840. DOI: 10.14314/polimery.2004.837.10.14314/polimery.2004.837
  19. 19. Czech, Z. & Urbala, M. (2007). UV-crosslinked acrylic pressure-sensitive adhesive systems containing unsaturated ethers. Polimery 6, 438–442.10.14314/polimery.2007.438
  20. 20. Herzberger, J., Niederer, K., Pohlit, H., Seiwert, J., Worm, M., Wurm, F.R. & Frey, H. (2016). Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem. Rev. 116, 2170–2243. DOI: 10.1021/acs.chemrev.5b00441.10.1021/acs.chemrev.5b0044126713458
  21. 21. Li, Z. & Chau, Y. (2011). A facile synthesis of branched poly(ethylene glycol) and its heterobifunctional derivatives. Polym. Chem. 2, 873–878. DOI: 10.1039/C0PY00339E.10.1039/c0py00339e
  22. 22. Vansteenkiste, S., Matthijs, G., Schacht, E., De Schrijver, F.C., Van Damme, M. & Vermeersch, J. (1999). Preparation of Tailor-Made Multifunctional Propenyl Ethers by Radical Copolymerization of 2-(1-Propenyl)oxyethyl Methacrylate. Macromolecules 32(1), 55–59. DOI: 10.1021/ma980458+.10.1021/ma980458+
  23. 23. Thi, T.T.H., Pilkington, E.H., Nguyen, D.H., Lee, J.S., Park, K.D. & Truong, N.P. (2020). The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers 12, 298–319. DOI: 10.3390/polym1202029810.3390/polym12020298707744332024289
  24. 24. Ota K., Kai K. & Uchida H., JP 2000143567 (2000) to Showa Denko K. K., Japan.
  25. 25. Kuo, L.Y. & Delaney, F.E. (2015). Catalytic isomerization of allyl functionalities in water by hexaaquaruthenium(II) tosylate. Inorg. Chim. Acta, 435, 335–339. DOI: 10.1016/j. ica.2015.07.001.
  26. 26. Pertici, P., Malanga, C., Guintoli, A., Vitulli, G. & Martra, G. (1996). The (η6-naphthalene)(η4-cycloocta-1,5-diene) ruthenium(0) complex as precursor for homogeneous and heterogeneous catalysts in the isomerization of allyl ethers and allyl acetals to vinyl derivatives. Gazz. Chim. Ital. 126, 587–593.
  27. 27. The energy minimized structures of allylalcohol substrates were generated via molecular mechanics of MM2 program in Chem3D Pro software (in ChemBioDraw Ultra 13.0 Cambridge software) using the set functions.
  28. 28. Plausible structure of complexes formed via temporary coordination of ruthenium by 2-allyloxyethanol or 2-[2-(allyloxy)etoxy]ethanol were determined in ChemSketch (ACD/ Labs 2018.1.1 software) with using 3D optimization function.
  29. 29. Winterton, N. (2011). Chemistry for Sustainable Technologies: A Foundation. London: RSC Publishing.
  30. 30. Dunn, P.J., Hii, K.K., Krische, M.J. & Williams, M.T. (2013) Sustainable Catalysis: Challenges and Practices for the Pharmaceutical and Fine Chemical Industries. New York: John Wiley & Sons.
Language: English
Page range: 55 - 63
Published on: Oct 2, 2020
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Magdalena Urbala, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.