Have a personal or library account? Click to login
Nitrogen-doped Carbon Catalyst by Ultrasonic for Electrocatalytic CO2 Reduction Cover

Nitrogen-doped Carbon Catalyst by Ultrasonic for Electrocatalytic CO2 Reduction

Open Access
|Oct 2020

References

  1. 1. Nabipour, N. & Iranshahi, D. (2017). Novel Chemical Looping Combustion Assisted Residue Fluid Catalytic Cracking Process in Order To Reduce CO2 Emission and Gasoline Production Enhancement. Energy & Fuels 31 (5), 5662–5672. DOI: 10.1021/acs.energyfuels.7b00169.10.1021/acs.energyfuels.7b00169
  2. 2. Oschatz, M. & Antonietti, M. (2018). A search for selectivity to enable CO2 capture with porous adsorbents. Energy & Environ. Sci. 11 (1), 57–70. DOI: 10.1039/C7EE02110K.10.1039/C7EE02110K
  3. 3. Li, X., Anderson, P., Jhong, H., Paster, M., Stubbins, J. &Kenis, P. (2016). Greenhouse Gas Emissions, Energy Efficiency, and Cost of Synthetic Fuel Production Using Electrochemical CO2 Conversion and the Fischer–Tropsch Process. Energy & Fuels 30 (7), 5980–5989. DOI: 10.1021/acs.energyfuels.6b00665.10.1021/acs.energyfuels.6b00665
  4. 4. Zhao, S., Ma, L., Yang, J., Zheng, D., Liu, H. & Yang, J. (2017). Mechanism of CO2 Capture Technology Based on the Phosphogypsum Reduction Thermal Decomposition Process. Energy & Fuels 31 (9), 9824–9832. DOI: 10.1021/acs. energyfuels.7b01673.10.1021/acs.energyfuels.7b01673
  5. 5. Gong, J., Zhang, L. & Zhao, Z. (2017). Nanostructured Materials for Heterogeneous Electrocatalytic CO2 Reduction and Related Reaction Mechanisms. Angewandte Chemie International Edition. DOI: 10.1002/anie.201612214.10.1002/anie.20161221428168799
  6. 6. Kornienko, N., Zhao, Y., Kley, C.S., Zhu, C., Kim, D., Lin, S., Chang, C.J., Yaghi, O.M. & Yang, P. (2015). Metal--organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137 (44), 14129–35. DOI: 10.1021/jacs.5b0821210.1021/jacs.5b0821226509213
  7. 7. Vasileff, A., Yao, Z. & Shi, Z. (2017). Carbon Solving Carbon’s Problems: Recent Progress of Nanostructured Carbon--Based Catalysts for the Electrochemical Reduction of CO2. Adv. Energy Mater. 7 (21), 1700759. DOI: 10.1002/aenm.20170075910.1002/aenm.201700759
  8. 8. Gutiérrez-Guerra, N., Moreno-López, L., Serrano-Ruiz, J., Valverde, J. & de Lucas-Consuegra, A. (2016). Gas phase electrocatalytic conversion of CO2 to syn-fuels on Cu based catalysts-electrodes. Appl. Catal. B: Environ. 188, 272–282. DOI: 10.1016/j.apcatb.2016.02.010.10.1016/j.apcatb.2016.02.010
  9. 9. Gao, S., Lin, Y., Jiao, X., Sun, Y., Luo, Q., Zhang, W., Li, D., Yang, J. & Xie, Y. (2016). Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529 (7584), 68. DOI: 10.1038/nature16455.10.1038/nature1645526738592
  10. 10. Lin, S., Diercks, C., Zhang, Y., Kornienko, N., Nichols, E., Zhao, Y., Paris, A., Kim, D., Yang, P., Yaghi, O. & Chang, C. (2015). Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349 (6253), 1208–1213. DOI: 10.1126/science.aac8343.10.1126/science.aac834326292706
  11. 11. Gao, D., Zhou, H., Wang, J., Miao, S., Yang, F., Wang, G., Wang, J. & Bao, X. (2015). Size-Dependent Electrocatalytic Reduction of CO2 over Pd Nanoparticles. J. Amer. Chem. Soc. 137 (13), 4288. DOI: 10.1021/jacs.5b00046.10.1021/jacs.5b0004625746233
  12. 12. Tao, L., Wang, Q., Dou, S., Ma, Z., Huo, J., Wang, S. & Dai, L. (2016). Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 52 (13), 2764–2767. DOI: 10.1039/c5cc09173j.10.1039/C5CC09173J26757794
  13. 13. Xu, L., Jiang, Q., Xiao, Z., Li, X., Huo, J., Wang, S. & Dai, L. (2016). Plasma-Engraved Co3O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. Angew. Chem. Internat. Edit. 55 (17), 5277–5281. DOI: 10.1002/ange.201600687.10.1002/ange.201600687
  14. 14. Li, R., Hu, D., Zhang, S., Zhang, G., Wang, J. & Zhong, Q. (2015). Spinel Manganese–Cobalt Oxide on Carbon Nano-tubes as Highly Efficient Catalysts for the Oxygen Reduction Reaction. Energy Technol. 3 (12), 1183–1189. DOI: 10.1002/ente.201500156.10.1002/ente.201500156
  15. 15. Mou, S., Wu, T., Xie, J., Zhang, Y., Ji, L. & Huang, H. (2019). Boron phosphide nanoparticles: a nonmetal catalyst for high-selectivity electrochemical reduction of CO2 to CH3OH. Adv. Mater. 31(36), 1903499.1–6. DOI: 10.1002/adma. 201903499.10.1002/adma.201903499
  16. 16. Ji, L., Chang, L., Zhang, Y., Mou, S. & Sun, X. (2019). Electrocatalytic CO2 reduction to alcohols with high selectivity over two-dimensional Fe2P2S6 nanosheet. ACS Catal., 2019(XXXX). DOI: 10.1021/acscatal.9b03180.10.1021/acscatal.9b03180
  17. 17. Ji, L., Li, L., Ji, X., Zhang, Y., Mou, S. & Wu, T. (2020). Highly selective electrochemical reduction of co2 to alcohols on an fep nanoarray. Angew. Chemie Internat. Edit. 59(2). DOI: 10.1002/ange.201912836.10.1002/ange.201912836
  18. 18. Wang, D., Wang, J., Luo, X., Wu, Z. & Ye, L. (2017). In Situ Preparation of Mo2C Nanoparticles Embedded in Ketjenblack Carbon as Highly Efficient Electrocatalysts for Hydrogen Evolution. ACS Sustainable Chem. & Engin. 6 (1), 983–990. DOI: 10.1021/acssuschemeng.7b03317.10.1021/acssuschemeng.7b03317
  19. 19. Miyake, T., Oike, M., Yoshino, S., Yatagawa, Y., Haneda, K., Kaji, H. & Nishizawa, M. (2009). Biofuel cell anode: NAD+/glucose dehydrogenase-coimmobilized ketjenblack electrode. Chem. Phys. Letters 480 (1), 123–126. DOI: 10.1016/j. cplett.2009.08.075.10.1016/j.cplett.2009.08.075
  20. 20. Nabae, Y., Rokubuichi, H., Mikuni, M., Kuang, Y., Hayakawa, T. & Kakimoto, M. (2013). Catalysis by Carbon Materials for the Aerobic Baeyer–Villiger Oxidation in the Presence of Aldehydes. Acs Catalysis 3 (2), 230–236. DOI: 10.1021/cs3007928.10.1021/cs3007928
  21. 21. Tashima, D., Kishita, T., Maeno,, S. & Nagasawa, Y. (2013). Mesoporous graphitized Ketjenblack as conductive nanofiller for supercapacitors. Mater. Letters 110 (11), 105–107. DOI: 10.1016/j.matlet.2013.07.121.10.1016/j.matlet.2013.07.121
  22. 22. Li, Y., Wang, L., He, X., Tang, B., Jin, Y. & Wang, J. (2016). Boron-doped Ketjenblack based high performances cathode for rechargeable Li–O2 batteries. J. Energy Chem. 25 (1), 131–135. DOI: 10.1016/j.jechem.2015.08.011.10.1016/j.jechem.2015.08.011
  23. 23. Hursan, D. & Janaky, C. (2018). Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies. ACS Energy Lett 3 (3), 722–723. DOI: 10.1021/acsenergylett.8b00212.10.1021/acsenergylett.8b00212584814429552639
  24. 24. Hao, Y., Lu, Z., Zhang, G., Chang, Z., Luo, L. & Sun, X. (2017). Cobalt-Embedded Nitrogen-Doped Carbon Nanotubes as High-Performance Bifunctional Oxygen Catalysts. Energy Technol. 5 (8), 1265–1271. DOI: 10.1002/ente.201600559.10.1002/ente.201600559
  25. 25. Chen, C., Lu, Y., Ge, Y., Zhu, J., Jiang, H., Li, Y., Hu, Y. & Zhang, X. (2016). Synthesis of Nitrogen-Doped Electrospun Carbon Nanofibers as Anode Material for High--Performance Sodium-Ion Batteries. Energy Technol. 4 (11), 1440–1449. DOI: 10.1002/ente.201600205.10.1002/ente.201600205
  26. 26. Wu, J., Yadav, R., Liu, M., Sharma, P., Tiwary, C., Ma, L., Zou, X., Zhou, X., Yakobson, B. & Lou, J. (2015). Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes. Acs Nano 9 (5), 5364–5371. DOI: 10.1021/acsnano.5b01079.10.1021/acsnano.5b0107925897553
  27. 27. Zhang, S., Kang, P., Ubnoske, S., Brennaman, M., Song, N., House, R. & Meyer, T. (2014). Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Amer. Chem. Soc. 136(22), 7845–7848. DOI: 10.1021/ja5031529.10.1021/ja503152924779427
  28. 28. Xu, J., Kan, Y., Huang, R., Zhang, B., Wang, B., Wu, K. & Su, D. (2016). Revealing the origin of activity in nitrogen-doped nanocarbons towards electrocatalytic reduction of carbon dioxide. Chem. Sus. Chem. 9(10), 1085–1089. DOI: 10.1002/cssc.201600202.10.1002/cssc.20160020227100272
  29. 29. Bi, L., Ci, S., Cai, P., Li, H. & Wen, Z. (2018). One-step pyrolysis route to three dimensional nitrogen-doped porous carbon as anode materials for microbial fuel cells. Appl. Surf. Sci. 427. DOI: 10.1016/j.apsusc.2017.08.030.10.1016/j.apsusc.2017.08.030
Language: English
Page range: 24 - 38
Published on: Oct 2, 2020
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Jianfeng Liu, Ting Wang, Zhenhai Zhang, Kai Ning, Shibin Yin, Binxia Yuan, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.