Have a personal or library account? Click to login
Calcium alginate/activated carbon/humic acid tri-system porous fibers for removing tetracycline from aqueous solution Cover

Calcium alginate/activated carbon/humic acid tri-system porous fibers for removing tetracycline from aqueous solution

Open Access
|Oct 2020

References

  1. 1. Ahmed, M.B., Zhou, J.L., Ngo, H.H. & Guo, W. (2015). Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 532, 112–126. DOI: 10.1016/j.scitotenv.2015.05.130.10.1016/j.scitotenv.2015.05.13026057999
  2. 2. Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S.M. &. Su X.(2012). Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid & Interf. Sci. 368, 540–546. DOI: 10.1016/j.jcis.2011.11.015.10.1016/j.jcis.2011.11.01522138269
  3. 3. Tayeri, V., Seidavi, A., Asadpour, L. & Phillips, C.J.C. (2018). A comparison of the effects of antibiotics, probiotics, synbiotics and prebiotics on the performance and carcass characteristics of broilers. Veter. Res. Commun. 42, 1–13.10.1007/s11259-018-9724-229777375
  4. 4. Wang, Q., Li, X., Yang, Q., Chen, Y. & Du, B. (2019). Evolution of microbial community and drug resistance during enrichment of tetracycline-degrading bacteria. DOI: 10.1016/j. ecoenv.2019.01.047. DOI: 10.1016/j.ecoenv.2019.01.047.10.1016/j.ecoenv.2019.01.04730660087
  5. 5. Homem, V. & Santos, L. (2011). Degradation and removal methods of antibiotics from aqueous matrices – a review. J. Environ. Manag. 92, 2304–2347. DOI: 10.1016/j.jenvman.2011.05.023.10.1016/j.jenvman.2011.05.02321680081
  6. 6. Yang, Y., Liu, W., Xu, C., Wei, B. & Wang. J. (2017). Antibiotic resistance genes in lakes from middle and lower reaches of the Yangtze River, China: Effect of land use and sediment characteristics. Chemosphere 178, 19–25. DOI: 10.1016/j.chemosphere.2017.03.041.10.1016/j.chemosphere.2017.03.04128314124
  7. 7. Le, X.T., Munekage, Y. & Kato, S. (2005). Antibiotic resistance in bacteria from shrimp farming in mangrove areas. Sci. The Total Environ. 349, 95–105. DOI: 10.1016/j. scitotenv.2005.01.006.10.1016/j.scitotenv.2005.01.006
  8. 8. Qiu, W., Sun, J., Fang, M., Luo, S., Tian, Y., Dong, P., Xu, B. & Zheng. C. Occurrence of antibiotics in the main rivers of Shenzhen, China: Association with antibiotic resistance genes and microbial community. Sci. The Total Environ. DOI: 10.1016/j.scitotenv.2018.10.398.10.1016/j.scitotenv.2018.10.39830412878
  9. 9. Jin, H., Kumar, A.P., Paik, D.-H., Ha, K.-Ch., Yoo, Y.-J. & Lee Y.-Ill. (2010). Trace analysis of tetracycline antibiotics in human urine using UPLC-QToF mass spectrometry. Microchem. J. 94, 139–147. DOI: 10.1016/j.microc.2009.10.010.10.1016/j.microc.2009.10.010
  10. 10. Rong, H., Xin, X., Zuo, X., Nan, J. & Zhang, W. (2012). Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI micro-spheres. J. Hazard. Mater. 209–210, 137–145. DOI: 10.1016/j. jhazmat.2012.01.006.10.1016/j.jhazmat.2012.01.006
  11. 11. Wang, L., Ben, W., Li, Y., Liu, C. & Qiang, Z. (2018). Behavior of tetracycline and macrolide antibiotics in activated sludge process and their subsequent removal during sludge reduction by ozone. Chemosphere 206, 184–191. DOI: 10.1016/j. chemosphere.2018.04.180.10.1016/j.chemosphere.2018.04.180
  12. 12. Zhang, X., Lin, X., He, Y., Chen, Y., Luo, X. & Shang, R. (2019). Study on adsorption of tetracycline by Cu-immobilized alginate adsorbent from water environment. Int. J. Biol. Macromol. 124, 418–428. DOI: 10.1016/j.ijbiomac.2018.11.218.10.1016/j.ijbiomac.2018.11.21830496862
  13. 13. Zhang, D., Yin, J., Zhao, H., Zhu, J. & Wang. C. (2015). Adsorption and removal of tetracycline from water by petroleum coke-derived highly porous activated carbon. J. Environ. Chem. Engin. 3, 1504–1512. DOI: 10.1016/j.jece.2015.05.014.10.1016/j.jece.2015.05.014
  14. 14. Liu, P., Liu, W.J., Jiang, H., Chen, J.J., Li, W.W &. Yu, H.Q (2012). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Biores. Technol. 121, 235–240. DOI: 10.1016/j.biortech.2012.06.085.10.1016/j.biortech.2012.06.08522858491
  15. 15. Farooq, M. Bell, A.H., Almustapha, M.N. & Andresen, J.M. (2017). Bio-methane from an-aerobic digestion using activated carbon adsorption. Anaerobe 46, 33–40. DOI: 10.1016/j. anaerobe.2017.05.003.10.1016/j.anaerobe.2017.05.003
  16. 16. Yuan, G., Yue, Q., Gao, B., Sun, Y., Wang, W., Qian, L. & Yan, W. (2013). Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption. Chem. Engin. J. 217, 345–353. DOI: 10.1016/j.cej.2012.09.038.10.1016/j.cej.2012.09.038
  17. 17. Mahdavi, M., Ebrahimi, A., Mahvi, A.H., Fatehizadeh, A. & Azarpira, H. (2018). Experimental data for aluminum removal from aqueous solution by raw and iron-modified granular activated carbon. Data in Brief. 17, 731–738. DOI: 10.1016/j.dib.2018.01.06310.1016/j.dib.2018.01.063598838229876430
  18. 18. Hao, B.P. & Zheng, P.S. (2010). Suggestion on Utilization and Development of Humic Acid in Ecological Agriculture Construction. J. Shanxi Agric. Sci. DOI: 10.1080/00949651003724790. DOI: 10.1080/00949651003724790.10.1080/00949651003724790
  19. 19. Kloster, N. & Avena, M. (2015). Interaction of humic acids with soil minerals: adsorption and surface aggregation induced by Ca2+. Environ. Chem. 12, 37–39. DOI: 10.1071/EN14157.10.1071/EN14157
  20. 20. Pils, J.R. &. Laird, D.A. (2007). Sorption of tetracyc-line and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes. Environ. Sci. & Technol. 41, 1928.10.1021/es062316y17410786
  21. 21. Tombácz, E., Dobos, Á., Szekeres, M., Narres, H.D., Klumpp, E. & Dékány, I. (2000). Effect of pH and ionic strength on the interaction of humic acid with aluminium oxide. Colloid & Polym. Sci. 278, 337–345. DOI: 10.1007/s003960050522.10.1007/s003960050522
  22. 22. Zhang, H., Omer, A.M., Hu, Z., Ly, Y., Ji, C. & Ouyang, X.K. (2019). Fabrication of magnetic bentonite/carboxymethyl chitosan/sodium alginate hydrogel beads for Cu (II) adsorption. Internat. J. Biolog. Macromol. 135, 490.10.1016/j.ijbiomac.2019.05.18531145956
  23. 23. Dechojarassri, D., Omote, S., Nishida, K., Omura, T. & Tamura, H. (2018). Preparation of alginate fibers coagulated by calcium chloride or sulfuric acid: Application to the adsorption of Sr2. J. Hazard. Mater. 355, 154–161.10.1016/j.jhazmat.2018.05.02729787967
  24. 24. Sarmento, B., Martins, S., Ribeiro, A., Veiga, F., Neufeld, R. & Ferreira, D. (2006). Development and Comparison of Different Nanoparticulate Polyelectrolyte Complexes as Insulin Carriers. Internat. J. Peptide Res. & Therap. 12, 131–138. DOI: 10.1007/s10989-005-9010-3.10.1007/s10989-005-9010-3
  25. 25. Jing, Y., Wang, J. & Jiang, Y. (2016). Removal of Uranium from Aqueous Solution by Alginate Beads. Nuclear Engin. & Technol. 49, S1738573316301826. DOI: 10.1016/j. net.2016.09.004.
  26. 26. Olad, A. & Azhar, F.F. (2014). A study on the adsorption of chromium (VI) from aqueous solutions on the alginate--montmorillonite/polyaniline nanocomposite. Desal. & Water Treatm. 52, 2548–2559. DOI: 10.1080/19443994.2013.794711.10.1080/19443994.2013.794711
  27. 27. Pawar, R.R., Lalhmunsiama, Gupta, P., Sawant, S.Y., Shahmoradi, B. & Lee, S.M. (2018). Porous synthetic hecto-rite clay-alginate composite beads for effective adsorption of methylene blue dye from aqueous solution. Internat. J. Biol. Macromol. 114, 1315–1324. DOI: 10.1016/j.ijbiomac.2018.04.008.10.1016/j.ijbiomac.2018.04.008
  28. 28. Foroughi, J., Spinks, G.M., Wallace, G.G & Whitten, P.G. (2008). Production of polypyrrole fibres by wet spinning. Synt. Metals. 158, 104–107. DOI: 10.1016/j.synthmet.2007.12.008.10.1016/j.synthmet.2007.12.008
  29. 29. Jiaguo, Y.U., Wang, S., Low, J. & Xiao, W. (2013). Enhanced photocatalytic performance of direct Z-scheme g-C3N4--TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 15, 16883–16890.10.1039/c3cp53131g
  30. 30. Gu, C., Karthikeyan, K.G., Sibley, S.D. & Pedersen, J.A. (2007). Complexation of the antibiotic tetracycline with humic acid. Chemosphere 66, 1494–1501.10.1016/j.chemosphere.2006.08.028
  31. 31. Chen, L.C., Lei, S., Wang, M.Z., Yang, J. & Ge, X.W. (2016). Fabrication of macroporous polystyrene/graphene oxide composite monolith and its adsorption property for tetracycline. Chin. Chem. Letters. 27, 511–517. DOI: 10.1016/j. cclet.2016.01.057.10.1016/j.cclet.2016.01.057
  32. 32. Choi, K.J., Kim, S.G. & Kim, S.H. (2008). Removal of antibiotics by coagulation and granular activated carbon filtration. J. Hazard. Mater. 151, 38–43. DOI: 10.1016/j.jhazmat.2007.05.059.10.1016/j.jhazmat.2007.05.059
  33. 33. Zhao, Y., Xueyuan, G.U., Gao, S., Geng, J. & Wang, X. (2012). Adsorption of tetracycline (TC) onto montmorillonite: Cations and humic acid effects. Geoderma 183–184, 12–18. DOI: 10.1016/j.geoderma.2012.03.004.10.1016/j.geoderma.2012.03.004
  34. 34. Dong, C., Zeng, Z., Zeng, Y., Fan, Z. & Wang, M. (2016). Removal of methylene blue and mechanism on magnetic γ-Fe 2 O 3 /SiO 2 nanocomposite from aqueous solution. Water Res. & Ind. 15, 1–13. DOI: 10.1016/j.wri.2016.05.003.10.1016/j.wri.2016.05.003
  35. 35. La ngmuir, I. The constitution and fundamental properties of solids and liquids, DOI: 10.1016/s0016-0032(17)90938-x. DOI: 10.1016/s0016-0032(17)90938-x.10.1016/S0016-0032(17)90938-X
  36. 36. Kooh, M.R.R., Dahri, M.K., Lim, L.B. L., Lim, L.H. & Malik, O.A. (2016). Batch adsorption studies of the removal of methyl violet 2B by soya bean waste: isotherm, kinetics and artificial neural network modelling. Environ. Earth Sci. 75, 783. DOI: 10.1007/s12665-016-5582-9.10.1007/s12665-016-5582-9
  37. 37. Gupta, V.K., Pathania, D., Sharma, S., Agarwal, S. & Singh, P. (2013). Remediation of noxious chromium (VI) utilizing acrylic acid grafted lignocellulosic adsorbent. J. Molec. Liquids 177, 343–352. DOI: 10.1016/j.molliq.2012.10.017.10.1016/j.molliq.2012.10.017
  38. 38. Doğan, M., Alkan, M., Demirbaş, Ö., Özdemir, Y. & Özmetin, C. (2006). Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions. Chem. Engin. J. 124, 89–101. DOI: 10.1016/j.cej.2006.08.016.10.1016/j.cej.2006.08.016
  39. 39. Ho, Y.S. & Chiang, C.C. (2001). Sorption Studies of Acid Dye by Mixed Sorbents. Adsorp. J. The Internat. Ads. Soc. 7, 139–147. DOI: 10.1023/A:1011652224816.10.1023/A:1011652224816
  40. 40. Jiang, L. H., Liu, Y.G., Zeng, G.M., Xiao, F.Y., Hu, X.J., Hu, X., Wang, H., Li, T.T., Zhou, L. & Tan, X.F. (2016). Removal of 17β-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: External influence and adsorption mechanism. Chem. Engin. J. 284, 93–102. DOI: 10.1016/j.cej.2015.08.139.10.1016/j.cej.2015.08.139
  41. 41. Elmoubarki, R., Mahjoubi, F.Z., Tounsadi, H., Moustadraf, J., Abdennouri, M., Zouhri, A., Albani, A.E. & Barka, N. (2015). Adsorption of textile dyes on raw and decanted Moroccan clays: Kinetics, equilibrium and thermodynamics. Water Res. & Ind. 9, 16–29. DOI: 10.1016/j.wri.2014.11.001.10.1016/j.wri.2014.11.001
  42. 42. Wu, F.C., Tseng, R.L. &. Juang, R.S. (2005). Comparisons of porous and adsorption properties of carbons activated by steam and KOH. J. Colloid Interf. Sci. 283, 49–56. DOI: 10.1016/j.jcis.2004.08.037.10.1016/j.jcis.2004.08.03715694423
  43. 43. Martins, A. C., Pezoti, O., Cazetta, A.L., Bedin, K.C., Yamazaki, D.A.S., Bandoch, G.F.G., Asefa, T., Visentainer, J.V. & Almeida, V.C. (2015). Removal of tetracycline by NaOH--activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chem. Engin. J. 260, 291–299. DOI: 10.1016/j.cej.2014.09.017.10.1016/j.cej.2014.09.017
  44. 44. Neghlani, P.K., Rafizadeh, M. &. Taromi, F.A. (2011). Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: Comparison with microfibers. J. Hazard. Mater. 186, 182–189.10.1016/j.jhazmat.2010.10.12121131126
Language: English
Page range: 9 - 16
Published on: Oct 2, 2020
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Qinye Sun, Heng Zheng, Yanhui Li, Meixiu Li, Qiuju Du, Cuiping Wang, Kunyan Sui, Hongliang Li, Yanzhi Xia, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.