Have a personal or library account? Click to login
Modeling and computing of stress and strain distribution in UHMW polyethylene elements of chosen artificial human joints Cover

Modeling and computing of stress and strain distribution in UHMW polyethylene elements of chosen artificial human joints

Open Access
|Oct 2020

References

  1. 1. Scifert, Ch.F., Brown, T. & Lipman, J. (1999). Finite element analysis of a novel design approach to resisting total hip dislocation, Clin. Biomech. 14, pp. 697–703.10.1016/S0268-0033(99)00054-6
  2. 2. Ryniewicz, A.M. & Madej, T. (2002). Analiza naprężeń i przemieszczeń w strefie roboczej endoprotezy stawu biodrowego, Mech. Med. 6, pp. 127–134.
  3. 3. El-Shiekh, F. & Hussam, E.D. (2002). Finite element simulation of hip joint replacement under static and dynamic loading, PhD thesis, Dublin City University.
  4. 4. John, A. & Orantek, P. (2006). Symulacja oddziaływań dynamicznych w stawie biodrowym ze sztuczną panewką, Model. Inż. 32, pp. 211–218.
  5. 5. Madej, T. & Ryniewicz, A. (2013). Modelowanie i symulacje wytrzymałościowe w stawie biodrowym zaopatrzonym protezą nakładkową jako procedura diagnostyczna przed zabiegiem kapoplastyki, Tribologia 2–2013.
  6. 6. Gierzyńska-Dolna, M. (1996). Odporność na zużycie materiałów stosowanych na endoprotezy, Mech. Medyc. Rzeszów, p. 131–141.
  7. 7. Polyakov, A., Pakhaliuk, V., Kalinin, M. & Kramar, V. (2015). System Analysis and Synthesis of Total Hip Joint Endoprosthesis, Proc. Engin. 100 pp. 530–538. DOI: 10.1016/j. proeng.2015.01.400.
  8. 8. Xu, X., Luo, D., Guo, Ch. & Rong, Q. (2017). A custom-made temporomandibular joint prosthesis for fabrication by selective laser melting: Finite element analysis, Medic. Engin. & Phys. 46, August 2017, Pages 1–11. DOI: 10.1016/j. medengphy.2017.04.012.
  9. 9. Eckert, J., Jaeger, S., Klotz, M., Schwarze, M. & Bitsch, R. (2018). Can intraoperative measurement of bone quality help in decision making for cementless unicompartmental knee arthroplasty? The Knee 25, Issue 4, August 2018, Pages 609–616 DOI:10.1016/j.knee.2018.03.013.10.1016/j.knee.2018.03.013
  10. 10. Jahnkea, A., Ulloaa, C., Seegera, J. & Rickert, M. (2018). Analysis of the elastic bending characteristics of cementless short hip stems considering the valgus alignment of the prosthetic stem, Clin. Biomech. 52 (2018) 49–56. DOI: 10.1016/j. clinbiomech.2018.01.006.
  11. 11. Dathe, H., Gezzi, R., Fiedler, Ch., Kubein-Meesenburg, D. & Nägerl, H. (2016) The description of the human knee as four-bar linkage, Acta Bioengin. Biomech. 18, 4. DOI: 10.5277/ABB-00464-2015-03.
  12. 12. Nagerl, H., Dathe, H., Fiedler, Ch., Gowers, L., Kirsch, S., Kubein-Meesenburg, D., Dumont, C. & Wachowski, M.M. (2015) The morphology of the articular surfaces of biological knee joints provides essential guidance for the construction of functional knee endoprostheses. Acta Bioengin. Biomech. 17, 2. DOI: 10.5277/ABB-00119-2014-02.
  13. 13. Mielińska, A., Czamara, A., Szuba, Ł. & Będziński, R. (2015) Biomechanical characteristics of the jump down of healthy subjects and patients with knee injuries, Acta Bioengin. Biomech. 17, 2. DOI: 10.5277/ABB-00208-2014-04.
  14. 14. Gierzyńska-Dolna, M. (2002). Biotribology. Częstochowa. Publishing of Czestochowa University of Technology.
  15. 15. Gierzyńska-Dolna, M. & Kubacki, J. (1999). Specificity of wear of hip and knee endoprostheses. Materials of II Symposium of Engineering Orthopedics and Protetics, IOP’99 Białystok, 45–51.
  16. 16. Olinski, M., Gronowicz, A., Handke, A. & Ceccarelli, M. (2016) Design and characterization of a novel knee articulation mechanism. Int. J. Appl. Mech. Engin. 21, 3. DOI: 10.1515/ijame-2016-0037.10.1515/ijame-2016-0037
  17. 17. Ciszkiewicz, A. & Knapczyk, J. (2014) Parameters estimation for the spherical model of the human knee joint using vector method. Int. J. Appl. Mech Engin. 19, 3. DOI: 10.2478/ijame-2014-0035.10.2478/ijame-2014-0035
  18. 18. Hajduk, G., Nowak, K., Sobota, G., Kusz, D., Kopeć, K., Błaszczak, E., Cieliński, Ł. & Bacik, B. (2016). Kinematic gait parameters changes in patients after total knee arthroplasty: Comparison between cruciate-retaining and posterior-substituting design. Acta Bioengin. Biomech. 18, 3. DOI: 10.5277/ABB-00405-2015-03.
  19. 19. Melzer, P., Głowacki, M., Głowacki, J. & Misterska, E. (2014) Isokinetic evaluation of knee joint flexor and extensor muscles after tibial eminence fractures, Acta Bioengin. Biomech. 16, 3. DOI: 10.5277/abb140313.
  20. 20. https://www.linkorthopaedics.de, access 29.04.2019.
  21. 21. Gierzyńska-Dolna, M. (1997). Tribological problems in natural and artificial human joint. Biomater. Engin. 2/1997.
  22. 22. Long, M. & Rack H.J. (1998). Titanium alloys in total joint replacement – a materials science perspective. Biomaterials 19 (1998) 1621–1639.
  23. 23. Zienkiewicz, O.C. (1972). Finite Elements Method. Publishing Arkady.
  24. 24. Knapczyk, J. & Góra-Maniowska, M. (2017) Displacement analysis of the human knee joint based on the spatial kinematic model by using vector method, Acta Mech. Automat. 11, 4. DOI: 10.1515/ama-2017-0050.10.1515/ama-2017-0050
  25. 25. https://www.zimmerbiomet.com, access 16.04.2018.
  26. 26. Będziński, R. (1997) Biomechanika inżynierska, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław.
  27. 27. Marciniak, J. (2002) Biomaterials, Gliwice, Publishing of Silesian University of Technology.
  28. 28. Ratner, B.D. (2004). Biomaterials Science, An Introduction to Materials in Medicine 2nd Edittion, Elsevier Academic Press, eBook ISBN: 9780080470368.
  29. 29. Bednarek, A., Zakrzewski, P. & Parol, W. (2008). Proteza nasadowa (modularna) stawu biodrowego Metha – założenia biomechaniczne, wczesne wyniki kliniczne, IV Międzynarodowe Sympozjum Koksartoza, 8 – 10.05.2008, Katowice.
  30. 30. Kumar, A., Bijwe, J. & Sharma, S. (2017). Hard metal nitrides: Role in enhancing the abrasive wear resistance of UHMWPE, Wear 378–379, Pages 35–42. DOI: 10.1016/j. wear.2017.02.010.
  31. 31. Cenna, A.A., Allen, S., Page, N.W & Dastoor, P. (2003). Modelling the three-body abrasive wear of UHMWPE particle reinforced composites, Wear 254, 5–6, Pages 581–588. DOI: 10.1016/S0043-1648(03)00067-X.10.1016/S0043-1648(03)00067-X
  32. 32. Zai, W., Wong, M.H. & Man, H.C. (2019). Improving the wear and corrosion resistance of CoCrMo-UHMWPE articulating surfaces in the presence of an electrolyte, Appl. Surf. Sci. 464, 404–411. DOI: 10.1016/j.apsusc.2018.09.027.10.1016/j.apsusc.2018.09.027
Language: English
Page range: 1 - 8
Published on: Oct 2, 2020
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Marcin Nabrdalik, Michał Sobociński, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.