Have a personal or library account? Click to login
Thermodynamics and kinetics of thermal deactivation of catalase Aspergillus niger Cover

Thermodynamics and kinetics of thermal deactivation of catalase Aspergillus niger

By: Justyna Miłek  
Open Access
|May 2020

References

  1. 1. Raducan, A., Cantemir, A.R., Puiu, M. & Oancea, D. (2012). Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects. Bioprocess Biosyst. Eng. 35(9), 1523−1530. DOI: 10.1007/s00449-012-0742-0.10.1007/s00449-012-0742-022565543
  2. 2. Kaddour, S., López-Gallego, F., Sadoun, T., Fernandez-Lafuente, R. & Guisan, J.M., (2008). Preparation of an immobilized − stabilized catalase derivative from Aspergillus niger having its multimeric structure stabilized: The effect of Zn2+ on enzyme stability. J. Mol. Catal. B: Enzym. 55, 142−145. DOI: 10.1016/j.molcatb.2008.03.006.10.1016/j.molcatb.2008.03.006
  3. 3. Akertek, E. & Tarhan, L. (1995). Characterization of immobilized catalases and their application in pasteurization of milk with H2O2. Appl. Biochem. Biotechnol. 50(3), 291–303. DOI: 10.1007/BF02788099.10.1007/BF02788099
  4. 4. Madhu, A. & Chakraborty, J.N. (2017). Developments in application of enzymes for textile processing. J. Clean. Prod. 145, 114–133. DOI: 10.1016/j.jclepro.2017.01.013.10.1016/j.jclepro.2017.01.013
  5. 5. Giorgiana, G.A. (2017). Catalase immobilization - A review. Biochem. Eng. J. 117, 1–20. DOI: 10.1016/j.bej.2016.10.021.10.1016/j.bej.2016.10.021
  6. 6. Pudlarz, A.M., Czechowska, E., Ranoszek-Soliwoda, K., Tomaszewska, E., Celichowski, G., Grobelny, J. & Szemraj, J. (2018). Immobilization of recombinant human catalase on gold and silver nanoparticles. Appl. Biochem. Biotechnol. 185(3), 717–735. DOI: 10.1007/s12010-017-2682-2.10.1007/s12010-017-2682-229299755
  7. 7. Röcker, J., Schmitt. M., Pasch, L., Ebert, K. & Grossmann, M. (2016). The use of glucose oxidase and catalase for the enzymatic reduction of the potential ethanol content in wine. Food Chem. 210, 660–670. DOI: 10.1016/j.foodchem.2016.04.093.10.1016/j.foodchem.2016.04.09327211694
  8. 8. Miłek, J. (2018). Estimation of the kinetic parameters for H2O2 enzymatic decomposition and for catalase deactivation. Braz. J. Chem. Eng. 35(3), 995–1004. DOI: 10.1590/0104-6632.20180353s20160617.10.1590/0104-6632.20180353s20160617
  9. 9. Miłek, J. & Wójcik, M. (2011). Effect of temperature on the decomposition of hydrogen peroxide by catalase Terminox Ultra. Przem. Chem. 90(6), 1260–1263. http://sigma-not.pl/publikacja-60227-wplyw-temperatury-na-rozklad-nadtlenku-wodoru-przezkatalaze-terminox-ultra-przemysl-chemiczny-2011-6.html.
  10. 10. Miłek, J., Wójcik, M. & Verschelde, W. (2014). Thermal stability for the effective use of commercial catalase. Pol. J. Chem. Tech. 16(4), 75–79. DOI: 10.2478/pjct-2014-0073.10.2478/pjct-2014-0073
  11. 11. Jürgen-Lohmann, D.L. & Legge, R.L. (2006). Immobilization of bovine catalase in sol–gels, Enz. Microb. Technol. 39, 626–633. DOI: 10.1016/j.enzmictec.2005.11.015.10.1016/j.enzmictec.2005.11.015
  12. 12. Elsebai, B., Ghica, M.E., Abbas, M.N. & Brett, C.M.A. (2017). Catalase based hydrogen peroxide biosensor for mercury determination by inhibition measurements, J. Hazard. Mater. 340, 344–350. DOI: 10.1016/j.jhazmat.2017.07.021.10.1016/j.jhazmat.2017.07.02128728113
  13. 13. Xu, Q., Cai, L., Zhao, H., Tang, J., Shen, Y., Hu, X. & Zeng, H. (2015). Forchlorfenuron detection based on its inhibitory effect towards catalase immobilized on boron nitride substrate. Biosens. Bioelectron. 63, 294–300. DOI: 10.1016/j. bios.2014.07.055.
  14. 14. Cantemir, A.R., Raducan, A., Puiu, M. & Oancea, D. (2013). Kinetics of thermal inactivation of catalase in the presence of additives. Proc. Biochem. 48, 471−477. DOI: 10.1016/j. procbio.2013.02.013.
  15. 15. Díaz, A., Muñoz-Clares, R.A., Rangel, P., Valdés, V.J. & Hansberg, W. (2005). Functional and structural analysis of catalase oxidized by singlet oxygen. Biochimie. 87, 205–214. DOI: 10.1016/j.biochi.2004.10.014.10.1016/j.biochi.2004.10.01415760714
  16. 16. De Borba, T.M., Machado, T.B., Brandelli, A., Kalil, S.J. (2018). Thermal stability and catalytic properties of protease from Bacillus sp. P45 active in organic solvents and ionic liquid. Biotechnol. Prog. 34, 1102–1108. DOI: 10.1002/btpr.2672.10.1002/btpr.267229987906
  17. 17. Anthon, G.E. & Barrett, D.M. (2002). Kinetic parameters for the thermal inactivation of quality-related enzymes in carrots and potatoes. J. Agric. Food Chem. 50, 4119–4125. DOI: 10.1021/jf011698i.10.1021/jf011698i12083894
  18. 18. Schwab, M. & Pinto, J.C. (2007). Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1: Problems involving one kinetic constant, Chem. Eng. Sci. 62, 2750–2764. DOI: 10.1016/j.ces.2007.02.020.10.1016/j.ces.2007.02.020
  19. 19. Freitas, F.F., Marquez, L.D.S., Ribeiro, G.P., Brandão, G.C., Cardoso, V.L., & Ribeiro, E.J. (2012). Optimization of the immobilization process of β-galatosidade by combined entrapment-cross-linking and the kinetics of lactose hydrolysis. Brazilian J. Chem. Eng. 29(01), 15–24. DOI: 10.1590/S0104-66322012000100002.10.1590/S0104-66322012000100002
  20. 20. Kikani, B.A. & S ingh, S .P. (2012). The stability and thermodynamic parameters of a very thermostable and calcium-independent α-amylase from a newly isolated bacterium, Anoxy-bacillus beppuensis TSSC-1. Proc. Biochem. 47(12), 1791–1798. DOI: 10.1016/j.procbio.2012.06.005.10.1016/j.procbio.2012.06.005
  21. 21. Hooda, P.V. (2014). Immobilization and kinetics of catalase on calcium carbonate nanoparticles attached epoxy support, Appl. Biochem. Biotechnol. 172, 115–130. DOI: 10.1007/s12010-013-0498-2.10.1007/s12010-013-0498-224048961
  22. 22. Gudelj, M., Fruhwirth, G.O., Paar, A., Lottspeich, F., Robra, K.H., Cavaco-Paulo, A. & Gübitz, G.M. (2001). A catalaseperoxidase from a newly isolated thermoalkaliphilic Bacillus sp. with potential for the treatment of textile bleaching effluents. Extremophiles 5, 423–429. DOI: 10.1007/s007920100218.10.1007/s00792010021811778844
  23. 23. Lorentzen, M.S., Moe, E.H., Jouve, M., Willassen, N.P. (2006). Cold adapted features of Vibrio salmonicida catalase: characterisation and comparison to the mesophilic counterpart from Proteus mirabilis. Extremophiles 10, 427-440. DOI: 10.1007/s00792-006-0518-z.10.1007/s00792-006-0518-z16609813
  24. 24. Moosavi-Movahedi, M.A. (1994). Interaction of Aspergillus niger catalase with sodium N-dodecyl sulphate. Pure Appl. Chem. 66, 71–75. DOI: 10.1016/1357-2725(96)00044-1.10.1016/1357-2725(96)00044-1
  25. 25. Prieto, G., Suárez, M.J., González-Pérez, A., Ruso, J.M. & Sarmiento, F. (2004). A spectroscopic study of the interaction catalase–cationic surfaktant (n-decyltrimethylammonium bromide) in aqueous solutions at different pH and temperatures, Phys. Chem. Chem. Phys. 6, 816–821. DOI: 10.1039/B308466C.10.1039/B308466C
  26. 26. Gouzi, H., Depagne, C., Coradin. T. (2011). Kinetics and thermodynamics of the thermal inactivation of polyphenol oxidase in an aqueous extract from Agaricus bisporus. J. Agric. Food Chem. 60(1), 500–506. DOI: 10.1021/jf204104g.10.1021/jf204104g
  27. 27. Çetinus, Ş.A. & Öztop, H.N. (2000). Immobilization of catalase on chitosan film. Enz. Microb. Technol. 26, 497–501. DOI: 10.1016/S0141-0229(99)00189-1.10.1016/S0141-0229(99)00189-1
  28. 28. Tukel, S.S. & Alptekin, O. (2004). Immobilization and kinetics of catalase onto magnesium silicate. Proc Biochem. 39, 2149–2155. DOI: 10.1016/j.procbio.2003.11.010.10.1016/j.procbio.2003.11.010
  29. 29. Vatsyayan, P. & Goswami, P. (2016). Highly active and stable large catalase isolated from a hydrocarbon degrading Aspergillus terreus MTCC 6324. Enzyme Res. 4379403. DOI: 10.1155/2016/4379403.10.1155/2016/4379403480706527057351
  30. 30. Vasić-Rački, D., Findrik, Z. & Presečki, A.V. (2011). Modelling as a tool of enzyme reaction engineering for enzyme reactor development. Appl. Microbiol. Biotechnol. 91, 845–856. DOI: 10.1007/s00253-011-3414-0.10.1007/s00253-011-3414-021691784
Language: English
Page range: 67 - 72
Published on: May 13, 2020
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Justyna Miłek, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.