Have a personal or library account? Click to login
Selected magnesium compounds as possible inhibitors of ammonium nitrate decomposition Cover

Selected magnesium compounds as possible inhibitors of ammonium nitrate decomposition

Open Access
|May 2020

References

  1. 1. Zygmunt, B. & Buczkowski, D. (2007). Influence of Ammonium Nitrate Prills’ Properties on Detonation Velocity of ANFO. Propellants Explos. Pyrotech. 32(5), 411–414. DOI: 10.1002/prep.200700045.10.1002/prep.200700045
  2. 2. Najlepsze Dostępne Techniki (BAT) Wytyczne dla Branży Chemicznej w Polsce (2005), Przemysł Wielkotonażowych Chemikaliów Nieorganicznych, Amoniaku, Kwasów i Nawozów Sztucznych, 13–75, 98–111, Min. Środ., Warszawa.
  3. 3. Oommen, C. & Jain, S.R. (1999). Ammonium nitrate: a promising rocket propellant oxidizer. J. Hazard. Mater. A67, 253–281. DOI: 10.1016/S0304-3894(99)00039-4.10.1016/S0304-3894(99)00039-4
  4. 4. Kumar, P., Joshi, P.C. & Kumar, R. (2016). Thermal decomposition and combustion studies of catalyzed AN/KDN based solid propellants. Combust. Flame. 166, 316–332. DOI: 10.1016/j.combustflame.2016.01.032.10.1016/j.combustflame.2016.01.032
  5. 5. Kohga, M. & Okamoto, K. (2011). Thermal decomposition behaviors and burning characteristics of ammonium nitrate/polytetrahydrofuran/glycerin composite propellant. Combust. Flame. 158, 573–582. DOI: 10.1016/j.combustflame.2010.10.009.10.1016/j.combustflame.2010.10.009
  6. 6. Shiota, K., Matsunaga, H. & Miyake, A. (2017). Effects of amino acids on solid-state phase transition of ammonium nitrate. J. Therm. Anal. Calorim. 127, 851–856. DOI: 10.1007/s10973-016-5416-8.10.1007/s10973-016-5416-8
  7. 7. Asgari, A., Ghan,i K., Keshavarz, M.H., Mousaviazar, A. & Khajavian, R. (2018). Ammonium nitrate-MOF-199: A new approach for phase stabilization of ammonium nitrate. Thermochim. Acta 667, 148–152. DOI: 10.1016/j.tca.2018.07.018.10.1016/j.tca.2018.07.018
  8. 8. Dana, A.G., Shter, G.E. & Grader, G.S. (2014). Thermal analysis of aqueous urea ammonium nitrate alternative fuel. RSC Adv. 4, 1–14. DOI: 10.1039/C4RA04381B.10.1039/C4RA04381B
  9. 9. Keskar, M., Vittal Rao, T.V. & Sali, S.K. (2010). Solid state reactions of UO2, ThO2 and (U,Th)O2 with ammonium nitrate. Thermochim. Acta 510, 68–74. DOI: 10.1016/j.tca.2010.06.024.10.1016/j.tca.2010.06.024
  10. 10. Kohga, M. & Togo, S. (2018). Influence of iron oxide on thermal decomposition behavior and burning characteristics of ammonium nitrate/ammonium perchlorate-based composite propellants. Combust. Flame. 192, 10–24. DOI: 10.1016/j.combustflame.2018.01.040.10.1016/j.combustflame.2018.01.040
  11. 11. Oxley, J.C., Smith, J. L., Rogers, E. & Yu, M. (2002). Ammonium nitrate: thermal stability and explosivity modifiers. Thermochim. Acta 384, 23–45. DOI: 10.1016/S00406031(01)00775-4.
  12. 12. Yang, M., Chen, X., Wang, Y., Yuan, B., Niu, Y., Zhang, Y., Liao, R. & Zhang, Z. (2017). Comparative evaluation of thermal decomposition behavior and thermal stability of powdered ammonium nitrate under different atmosphere conditions. J. Hazard. Mater. 337, 10–19. DOI: 10.1016/j.jhazmat.2017.04.063.10.1016/j.jhazmat.2017.04.06328501639
  13. 13. Yang, M., Chen, X., Yuan, B., Wang, Y., Rangwala, A.S., Cao, H., Niu, Y., Zhang, Y., Fan, A. & Yin, S. (2018). Inhibition effect of ammonium dihydrogen phosphate on the thermal decomposition characteristics and thermal sensitivity of ammonium nitrate. J. Anal. Appl. Pyrol. 134, 195–201. DOI: 10.1016/j.jaap.2018.06.008.10.1016/j.jaap.2018.06.008
  14. 14. Izato, Y. & Miyake, A. (2015). Thermal decomposition mechanism of ammonium nitrate and potassium chloride mixtures. J. Therm. Anal. Calorim. 121, 287–294. DOI: 10.1007/s10973-015-4739-1.10.1007/s10973-015-4739-1
  15. 15. Gunawan, R. & Zhang, D. (2009). Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite. J. Hazard. Mater. 165, 751–758. DOI: 10.1016/j.jhazmat.2008.10.054.10.1016/j.jhazmat.2008.10.05419056177
  16. 16. Han, Z., Sachdeva, S., Papadaki, M.I. & Sam Mannan, M. (2015). Ammonium nitrate thermal decomposition with additives. J. Loss Prevent. Proc. 35, 307–315. DOI: 10.1016/j.jlp.2014.10.011.10.1016/j.jlp.2014.10.011
  17. 17. Han, Z., Sachdeva, S., Papadaki, M.I. & Sam Mannan, M. (2016). Effects of inhibitor and promoter mixtures on ammonium nitrate fertilizer explosion hazards. Thermochim. Acta 624, 69–75. DOI: 10.1016/j.tca.2015.12.005.10.1016/j.tca.2015.12.005
  18. 18. Sinditskii, V.P., Egorshev, V.Y., Levshenkov, A.I. & Serushkin, V.V. (2005). Ammonium nitrate: combustion mechanism and the role of additives. Propell. Explos. Pyrot. 30(4), 269–280. DOI: 10.1002/prep.200500017.10.1002/prep.200500017
  19. 19. Tan, L., Xia, L., Wu, Q., Xu, S. & Liu, D. (2015). Effect of urea on detonation characteristics and thermal stability of ammonium nitrate. J. Loss Prevent. Proc. 38, 169–175. DOI: 10.1016/j.jlp.2015.09.012.10.1016/j.jlp.2015.09.012
  20. 20. Madany, G.H. & Burnet, G. (1968). Inhibition of the thermal decomposition of ammonium nitrate. J. Agr. Food Chem. 16(1), 136–141.10.1021/jf60155a024
  21. 21. Klimova, I., Kaljuvee, T., Turn, L., Bender, V., Trikkel, A. & Kuusik, R. (2011). Interactions of ammonium nitrate with different additives. J. Therm. Anal. Calorim. 105, 13–26. DOI: 0.1007/s10973-011-1514-9.10.1007/s10973-011-1514-9
  22. 22. Kaljuvee, T., Edro, E. & Kuusik, R. (2008). Influence of lime-containing additives on the thermal behaviour of ammonium nitrate. J. Therm. Anal. Calorim. 92, 215–21. DOI: 10.1007/s10973-007-8769-1.10.1007/s10973-007-8769-1
  23. 23. Popławski, D., Hoffmann, J., Hoffmann, K., Effect of carbonate minerals on the thermal stability of fertilisers containing ammonium nitrate. J. Therm. Anal. Calorim. 124, 1561–1574. DOI: 10.1007/s10973-015-5229-1.10.1007/s10973-015-5229-1
  24. 24. Pittman, W., Han, Z., Harding, B., Tosas, C., Jiang, J., Pineda, A. & Sam Mannan, M. (2014). Lessons to be learned from an analysis of ammonium nitrate disasters in the last 100 years. J. Hazard. Mater. 280, 472–477. DOI: 10.1016/j. hazmat.2014.08.037.
  25. 25. Cao, H., Jiang, L., Duan, Q., Zhang, D., Chen, H. & Sun, J. (2019). An experimental and theoretical study of optimized selection and model reconstruction for ammonium nitrate pyrolysis. J. Hazard. Mater. 364, 539–547. DOI: 10.1016/j. jhazmat.2018.10.048.
  26. 26. Yang, M., Chen, X., Wang, Y., Yuan, B., Niu, Y., Zhang, Y., Liao, R. & Zhang, Z. (2017). Comparative evaluation of thermal decomposition behavior and thermal stability of powdered ammonium nitrate under different atmosphere conditions. J. Hazard. Mater. 337, 10–19. DOI: 10.1016/j.jhazmat.2017.04.063.10.1016/j.jhazmat.2017.04.06328501639
  27. 27. Skarlis, S.A., Nicolle, A., Berthout, D., Dujardin, C. & Granger, P. (2014). Combined experimental and kinetic modeling approaches of ammonium nitrate thermal decomposition. Thermochim. Acta. 584, 58–66. DOI: 10.1016/j.tca.2014.04.004.10.1016/j.tca.2014.04.004
  28. 28. Izato, Y., Shiota, K. & Miyake, A. (2019). Condensed--phase pyrolysis mechanism of ammonium nitrate based on detailed kinetic model. J. Anal. Appl. Pyrol. DOI: 10.1016/j. jaap.2019.104671.
  29. 29. Kaniewski, M., Hoffmann, K. & Hoffmann, J. (2019). Influence of selected potassium salts on thermal stability of ammonium nitrate. Thermochim. Acta. 678. DOI: 10.1016/j.tca.2019.178313.10.1016/j.tca.2019.178313
Language: English
Page range: 1 - 8
Published on: May 13, 2020
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Józef Hoffmann, Maciej Kaniewski, Dominik Nieweś, Krystyna Hoffmann, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.