Have a personal or library account? Click to login
Simultaneous adsorption of heavy metals from water by novel lemon-peel based biomaterial Cover

Simultaneous adsorption of heavy metals from water by novel lemon-peel based biomaterial

Open Access
|Mar 2020

References

  1. 1. Nnaji, C.C., Ebeagwu, C.J. & Ugwu, E.I. (2017). Physicochemical conditions for adsorption of lead from water by rice husk ash. BioResources. 12, 799–818. DOI: 10.15376/biores.12.1.799-818.10.15376/biores.12.1.799-818
  2. 2. Abdulaziz, M.A., Bakri, A.A., Al-Zahrani, S.A., Al-Zahrani, M.S., Al-Lehebi, A.N., Banjar, F.M. & Nabag, M.I. (2019). Removal of Hexavalent Chromium from Aqueous Solution by the Pod of Acacia gerrardii. Pol. J. Chem. Technol. 21(2), 14–19. DOI: 10.2478/pjct-2019-0014.10.2478/pjct-2019-0014
  3. 3. Shukla, S.R. & Pai, R.S. (2005). Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres. Bioresource Technol. 96, 1430–1438. DOI: 10.1016/j.biortech.2004.12.010.10.1016/j.biortech.2004.12.01015939269
  4. 4. Chao, H.P., Chang, C.C. & Nieva, A. (2014). Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column. J. Ind. Eng. Chem. 20, 3408–3414.10.1016/j.jiec.2013.12.027
  5. 5. Feng, N., Guo, X., Liang, S., Zhu, Y. & Liu, J. (2011). Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J. Hazard. Mater. 185, 49–54. DOI:10.1016/j.jhazmat.2010.08.114.10.1016/j.jhazmat.2010.08.11420965652
  6. 6. Bhatnagar, A., Minocha, A.K. & Sillanpää, M. (2010). Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem. Eng. J. 48, 181–186. DOI:10.1016/j.bej.2009.10.005.10.1016/j.bej.2009.10.005
  7. 7. Inagaki, C.S., Caretta, T.D.O., Alfaya, R.V.D.S. & Alfaya, Aa.D.S. (2013). Mexerica mandarin (Citrus nobilis) peel as a new biosorbent to remove Cu(II), Cd(II), and Pb(II) from industrial effluent. Desalin. Water. Treat. 51, 5537–5546. DOI: 10.1080/19443994.2012.759156.10.1080/19443994.2012.759156
  8. 8. Iqbal, M., Saeed, A. & Zafar S.I. (2009). FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd(2+) and Pb(2+) removal by mango peel waste, J. Hazard. Mater. 164(1), 161–171. DOI:10.1016/j.jhazmat.2008.07.141.10.1016/j.jhazmat.2008.07.14118799258
  9. 9. Meisam, T.M., Mehdi, A., Alireza, H. & Amir, K. (2013). Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. J. Taiwan. Inst. Chem. Eng. 44, 295–302. DOI:10.1016/j.jtice.2012.11.001.10.1016/j.jtice.2012.11.001
  10. 10. Njikam, E. & Schiewer, S. (2012). Optimization and kinetic modeling of cadmium desorption from citrus peels A process for biosorbent regeneration. J. Hazard. Mater. 213–214, 242–248. DOI:10.1016/j.jhazmat.2012.01.084.10.1016/j.jhazmat.2012.01.08422342899
  11. 11. Abdić, Š., Memić, M., Šabanović, E., Sulejmanović, J. & Begić, S. (2018). Adsorptive removal of eight heavy metals from aqueous solution by unmodified and modified agricultural waste tangerine peel. Int. J. Environ. Sci. Technol. 15, 2511–2518. DOI: 10.1007/s13762-018-1645-7.10.1007/s13762-018-1645-7
  12. 12. Nguyen, T.C., Loganathan, P., Nguyen, T.V., Kandasamy, J., Naidu, R. & Vigneswaran, S. (2018). Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash. Environ. Sci. Pol. Res. Int. 25, 20430–20438. DOI: 10.1007/s11356-017-9610-4.10.1007/s11356-017-9610-4
  13. 13. Park, J.H., Ok, Y.S., Kim, S.H., Cho, J.S., Heo, J.S., Delaune, R.D. & Seo, D.C. (2016). Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere. 142, 77–83. DOI:10.1016/j.chemosphere.2015.05.093.10.1016/j.chemosphere.2015.05.093
  14. 14. Šabanović, E., Muhić-Šarac, T., Nuhanović, M. & Memić, M. (2019). Biosorption of Uranium(VI) from aqueous solution by Citrus limon peels: kinetics, equlibrium and batch studies. J. Radioanal. Nucl. Chem. 319, 425–435. DOI: 10.1007/s10967-018-6358-3.10.1007/s10967-018-6358-3
  15. 15. Schiewer, S. & Patil, S.B. (2008). Pectin-rich fruit wastes as biosorbents for heavy metal removal: Equilibrium and kinetics. Bioresources Technol. 99, 1896–1903 DOI:10.1016/j. biortech.2007.03.060.
  16. 16. Mallampati, R. & Valiyaveettil, S. (2013). Apple Peels-A Versatile Biomass for Water Purification? ACS Appl. Mater. Inter. 5, 4443–4449. DOI: 10.1021/am400901e.10.1021/am400901e
  17. 17. Memon, S.Q., Memon, N., Shah, S.W., Khuhawar, M.Y. & Bhanger, M.I. (2007). Sawdust – A green and economical sorbent for the removal of cadmium(II) ions. J. Hazard. Mater. B. 139, 116–121. DOI:10.1016/j.jhazmat.2006.06.013.10.1016/j.jhazmat.2006.06.013
  18. 18. Özer, A. & Prinççi, H.B. (2006). The adsorption of Cd(II) ions on sulphuric acid-treated wheat bran. J. Hazard. Mater. B. 137, 849–855. DOI:10.1016/j.jhazmat.2006.03.009.10.1016/j.jhazmat.2006.03.009
  19. 19. Vanderborght, M. & Van Grieken, E. (1977). Enrichment of trace metals in water by adsorption on activated carbon. Anal. Chem. 49, 311–316. DOI: 10.1021/ac50010a032.10.1021/ac50010a032
  20. 20. Lagergren, S.Y. (1898). Zur Theorie der sogenannten Adsorption gelöster Stofe, Kungliga Svenska Vetenskapsakad. Handlingar, 24(4), 1–39.
  21. 21. Ho, Y.S. & McKay, G. (1999). Pseudo-second-order model for sorption processes. Process. Biochem. 34, 451–465.10.1016/S0032-9592(98)00112-5
  22. 22. Weber, W.Jr. & Morris, J.C. (1963). Kinetics of adsorption on carbon from solutions. J. Sanit. Eng. Div. 89, 31–38.10.1061/JSEDAI.0000430
  23. 23. Shen, W., Li, Z. & Liu, Y. (2008). Surface chemical functional groups modification of porous carbon. Recent. Pat. Chem. Eng. 1, 27–40. DOI:10.2174/2211334710801010027.10.2174/2211334710801010027
  24. 24. Ghasemi, M., Ghasemi, N., Zahedi, G., Alwi, S.R.W., Goodarzi, M. & Javadian, H. (2014). Kinetic and equilibrium study of Ni (II) sorption from aqueous solutions onto Peganum harmala-L. Int. J. Environ. Sci. Technol. 11, 1835–1844. DOI: 10.1007/s13762-014-0617-9.10.1007/s13762-014-0617-9
  25. 25. Sulejmanović, J., Šabanović, E., Begić, S. & Memić, M. (2019). Molybdenum(VI) oxide-modified silica gel as a novel sorbent for the simultaneous solid-phase extraction of eight metals with determination by flame atomic absorption spectrometry. Anal. Lett. 52, 588–601. DOI:10.1080/00032719.2018.1481418.10.1080/00032719.2018.1481418
  26. 26. Thirumavalavan, M., Lai, Y. & Lee, J. (2011). Fourier Transform Infrared Spectroscopic Analysis of Fruit Peels before and after the Adsorption of Heavy Metal Ions from Aqueous Solution. J. Chem. Eng. Data. 56, 2249–2255. DOI: 10.1021/je101262w.10.1021/je101262w
  27. 27. Thirumavalavan, M., Lai, Y., Lin, L. & Lee J. (2010). Cellulose-Based Native and Surface Modified Fruit Peels for the Adsorption of Heavy Metal Ions from Aqueous Solution: Langmuir Adsorption Isotherms. J. Chem. Eng. Data, 55, 1186–1192. DOI: 10.1021/je900585t.10.1021/je900585t
  28. 28. Arslanoglu, H., Altundogan, H.S. & Tumen, F. (2008). Preparation of cation exchanger from lemon and sorption of divalent heavy metals. Bioresource. Technol. 99, 2699–2705. DOI:10.1016/j.biortech.2007.05.022.10.1016/j.biortech.2007.05.02217600704
  29. 29. Singh, S.A. & Shukla, S.R. (2016). Adsorptive removal of cobalt ions on raw and alkali-treated lemon peels. Int. J. Environ. Sci. Technol. 13, 165–178. DOI: 10.1007/s13762-015-0801-6.10.1007/s13762-015-0801-6
  30. 30. Elanthikkal, S., Gopalakrishnapanicker, U., Varghese S. & Guthrie J.T. (2010). Cellulose microfibres produced from banana plant wastes: Isolation and Characterization. Carbohyd. Polym. 80, 852–859. DOI: 10.1016/j.carbpol.2009.12.043.10.1016/j.carbpol.2009.12.043
  31. 31. Mariño, M., Lopes da Silva, L., Durán, N. & Tasic, L. (2015). Enhanced materials from nature: nanocellulose from citrus waste. Molecules. 20, 5908–5923. DOI: 10.3390/molecules20045908.10.3390/molecules20045908627257225854755
  32. 32. Salih, M.S. (2012). Fourier Transform – Materials Analysis, Rijeka, Croatia: InTech.10.5772/2659
  33. 33. Janati, S.S.F., Beheshti, H.R., Feizy, J. & Fahim, N.K. (2012). Chemical composition of lemon and peels its considerations as animal food. GIDA- J. Food. 37(5), 267–271.
  34. 34. Meisam, T.M. (2013). Biosorption of lanthanum and cerium from aqueous solutions using tangerine (Citrus reticulata) peel: equilibrium, kinetic and thermodynamic studies. Chem. Ind. Chem. Eng. Q. /CICEQ. 19(1), 79–88. DOI: 10.2298/CICEQ120128043T.10.2298/CICEQ120128043T
  35. 35. Coleman, N.T., McClung, A.C. & Moore, D.P. (1956). Formation constants for Cu(II)-peat complexes. Science. 123, 330–331. DOI: 10.1126/science.123.3191.330.10.1126/science.123.3191.33017774524
  36. 36. OuYang, X.K., Jin, R.N., Yang, L.P., Wen, Z.S., Yang, L.Y., Wang, Y.G. & Wang, C.Y. (2014). Partially hydroliyzed Bamboo (Phyllostachys heterocycla) as a porous bioadsorbent for the removal of Pb(II) from aqueous mixtures. J. Agric. Food. Chem. 62, 6007–6015. DOI: 10.1021/jf5015846.10.1021/jf501584624915463
  37. 37. Jain, M., Garg, V.K., Kadirvelu, K. & Sillanpää, M. (2015). Adsorption of heavy metals from multi-metal aqueous solution by sunflower plant biomass-based carbons. Int. J. Environ. Sci. Technol. DOI: 10.1007/s13762-015-0855-5.10.1007/s13762-015-0855-5
  38. 38. Mahmood-ul-Hassan, M., Suthor, V., Rafique, E. & Yasin, M. (2015). Removal of Cd, Cr, and Pb from aqueous solution by unmodified and modified agricultural wastes. Environ. Monit. Assess. 187, 1–8. DOI: 10.1007/s10661-014-4258-8.10.1007/s10661-014-4258-825626568
  39. 39. Fang, J., Gao, B., Zimmerman, A.R., Roc, K.S. & Chen, J. (2016). Physically (CO2) activated hydrochars from hickory and peanut hull: preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium. RSC Adv. 6, 24906–24911. DOI: 10.1039/c6ra01644h.10.1039/C6RA01644H
  40. 40. Al-Baidhani, J.H. & Al-Salihy, S.T. (2016). Removal of Heavy Metals from Aqueous Solution by Using Low Cost Rice Husk in Batch and Continuous Fluidized Experiments. Int. J. Chem. Eng. Appl. 7(1), 6–10. DOI: 10.7763/IJCEA.2016.V7.532.10.7763/IJCEA.2016.V7.532
  41. 41. Ramutshatsha-Makhwedzha, D., Ngila, J.C., Ndungu, P.G. & Nomngongo, P.N. (2019). Ultrasound Assisted Adsorptive Removal of Cr, Cu, Al, Ba, Zn, Ni, Mn, Co and Ti from Seawater Using Fe2O3-SiO2-PAN Nanocomposite: Equilibrium Kinetics. J. Mar. Sci. Eng. 7, 133–149. DOI: 10.3390/jmse7050133.10.3390/jmse7050133
Language: English
Page range: 46 - 53
Published on: Mar 17, 2020
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Elma Šabanović, Mustafa Memić, Jasmina Sulejmanović, Alisa Selović, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.