Have a personal or library account? Click to login
Air Separation Units (ASUs) Simulation Using Aspen Hysys® at Oxinor I of Air Liquid Chile S.A Plant Cover

Air Separation Units (ASUs) Simulation Using Aspen Hysys® at Oxinor I of Air Liquid Chile S.A Plant

Open Access
|Mar 2020

References

  1. 1. Cochilco. Cochilco – Estadísticas (2016). http://www.cochilco.cl:4040/boletin-web/pages/tabla16/buscar.jsf (accessed February 9, 2017).
  2. 2. Smith, AR & Klosek, J.A. (2001). Review of Air Separation Technol. and Their Integration with Energy Conversion Processes. Fuel Process Technol. 70, 115–34. DOI: 10.1016/S0378-3820(01)00131-X.10.1016/S0378-3820(01)00131-X
  3. 3. Wang, M., Oyedun, A.O., Pahija, E., Zhu, Y., Liu, G. & Hui, CW. (2015). Integration and optimization of an air separation unit (ASU) in an IGCC plant. 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering. vol. 37. DOI: 10.1016/B978-0-444-63578-5.50080-3.10.1016/B978-0-444-63578-5.50080-3
  4. 4. Asma-Ul-Husna, Razia, H.Sk., Aysha, R. & Muhammad Ruhul, A. (2015). Energy saving in cryogenic air separation process applying self heat recuperation technology. Int. Conf. Mechanical Eng. Renew., Chittagong: ICMERE201. 5, p. 26–9.
  5. 5. Cao, Y., Swartz, CLE, Baldea, M. & Blouin, S. (2015). Optimization-based assessment of design limitations to air separation plant agility in demand response scenarios. J. Process Control. 33, 37–48. DOI: 10.1016/j.jprocont.2015.05.002.10.1016/j.jprocont.2015.05.002
  6. 6. Van Der Ham, L.V. (2012 ). Improving the exergy efficiency of a cryogenic air separation unit as part of an integrated gasification combined cycle. Energy Convers Manag. 61, 31–42. DOI: 10.1016/j.enconman.2012.03.004.10.1016/j.enconman.2012.03.004
  7. 7. Vila, P.L.C. & Serrano, M.A.L. (2002). Optimización de plantas criogénicas de producción de oxígeno. 15, 2509–14.
  8. 8. Kim, Y.S., Park, S.K., Lee, J.J., Kang, D.W. & Kim, T.S. (2013). Analysis of the impact of gas turbine modifications in integrated gasification combined cycle power plants. Energy. 55, 977–86. DOI: 10.1016/j.energy.2013.03.041.10.1016/j.energy.2013.03.041
  9. 9. Al-Lagtah, N.M.A., Al-Habsi, S. & Onaizi, S.A. (2015). Optimization and performance improvement of Lekhwair natural gas sweetening plant using Aspen HYSYS. J. Nat. Gas. Sci. Eng. 26, 367–81. DOI: 10.1016/j.jngse.2015.06.030.10.1016/j.jngse.2015.06.030
  10. 10. Jieyu, Z., Yanzhong, L., Guangpeng, L. & Biao, S. (2015). Simulation of a Novel Single-column Cryogenic Air Separation Process Using LNG Cold Energy. Phys. Procedia. 67, 116–22. DOI: 10.1016/j.phpro.2015.06.021.10.1016/j.phpro.2015.06.021
  11. 11. Hart, A. & Gnanendran, N. (2009). Cryogenic CO2 capture in natural gas. Energy Procedia. 1, 697–706. DOI: 10.1016/j.egypro.2009.01.092.10.1016/j.egypro.2009.01.092
  12. 12. Proust, P. & Vera, J.H. (1989). PRSV: The stryjek & vera modification of the peng-robinson equation of state. Parameters for other pure compounds of industrial interest. Can. J. Chem. Eng. 67, 170–3. DOI: 10.1002/cjce.5450670125.10.1002/cjce.5450670125
Language: English
Page range: 10 - 17
Published on: Mar 17, 2020
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 C.A. Leiva, D.A. Poblete, T.L. Aguilera, C.A. Acuña, F.J. Quintero, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.