Have a personal or library account? Click to login
Application of Taguchi method in the optimization of synthesis of cellulose-MgO bionanocomposite as antibacterial agent Cover

Application of Taguchi method in the optimization of synthesis of cellulose-MgO bionanocomposite as antibacterial agent

Open Access
|Dec 2019

References

  1. 1. Mozaffari, H.R., Izadi, B., Sadeghi, M., Rezaei, F., Sharifi, R. & Jalilian, F. (2016). Prevalence of oral and pharyngeal cancers in Kermanshah province, Iran: A ten-year period. Int. J. Cancer. Res. 12(3–4),169–175. DOI: 10.3923/ijcr.2016.169.175.10.3923/ijcr.2016.169.175
  2. 2. Mozaffari, H.R., Payandeh, M., Ramezani, M., Sadeghi, M., Mahmoudiahmadabadi, M. & Sharifi, R. (2017). Efficacy of palifermin on oral mucositis and acute GVHD after hematopoietic stem cell transplantation (HSCT) in hematology malignancy patients: a meta-analysis of trials. Współczesna. Onkol. 21(4), 299–305. DOI: 10.5114/wo.2017.72400.10.5114/wo.2017.72400
  3. 3. Benson, J.R. & Jatoi, I. (2012). The global breast cancer burden. Future. Oncol. 8(6), 697–702. DOI: 10.2217/fon.12.61.10.2217/fon.12.61
  4. 4. Mozaffari, H R., Zavattaro, E., Abdolahnejad, A., Lopez-Jornet, P., Omidpanah, N., Sharifi, R., Sadeghi, M., Shooriabi, M. & Safaei, M. (2018). Serum and Salivary IgA, IgG, and IgM Levels in Oral Lichen Planus: A Systematic Review and Meta-Analysis of Case-Control Studies. Medicina. 54(6), 99. DOI: 10.3390/medicina54060099.10.3390/medicina54060099
  5. 5. Mozaffari, H.R., Sharifi, R. & Sadeghi, M. (2018). Interleukin-6 levels in the serum and saliva of patients with oral lichen planus compared with healthy controls: a meta-analysis study. Centr. Eur. J. Immunol. 43(1), 103–108. DOI: 10.5114/ceji.2018.74880.10.5114/ceji.2018.74880
  6. 6. Veehof, M.M., Oskam, M.J., Schreurs, K.M. & Bohlmeijer, E.T. (2011). Acceptance-based interventions for the treatment of chronic pain: a systematic review and meta-analysis. Pain. 152(3), 533–542. DOI: 10.1016/j.pain.2010.11.002.10.1016/j.pain.2010.11.002
  7. 7. Sharifi, R., Khazaei, S., Mozaffari, H.R., Amiri, S.M., Iranmanesh, P. & Mousavi, S.A. (2017). Effect of massage on the success of anesthesia and infiltration injection pain in maxillary central incisors: Double-blind, crossover trial. Dent. Hypotheses. 8(3), 61–64. DOI: 10.4103/denthyp.denthyp_52_1610.4103/denthyp.denthyp_52_16
  8. 8. Taran, M., Etemadi, S. & Safaei, M. (2017). Microbial levan biopolymer production and its use for the synthesis of an antibacterial iron (II, III) oxide–levan nanocomposite. J. Appl. Polym. Sci. 134, 44613. DOI: 10.1002/app.44613.10.1002/app.44613
  9. 9. Laxminarayan, R., Matsoso, P., Pant, S., Brower, C., Rottingen, J.A., Klugman, K. & Davies, S. (2016). Access to effective antimicrobials: a worldwide challenge. Lancet. 387(10014), 168–175. DOI: 10.1016/S0140-6736(15)00474-2.10.1016/S0140-6736(15)00474-2
  10. 10. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L.F., Bresee, J.S., Shapiro, C., Griffin, P.M. & Tauxe, R.V. (1999). Food-related illness and death in the United States. Emerg. Infect. Dis. 5(5), 607. DOI: 10.3201/eid0505.990502.10.3201/eid0505.990502262771410511517
  11. 11. Elnashaie, S.S., Danafar, F. & Rafsanjani, H.H. (2015). Nanotechnology for chemical engineers. Springer, p. 273. DOI: 10.1007/978-981-287-496-2.10.1007/978-981-287-496-2
  12. 12. Zhang, L., Jiang, Y., Ding, Y., Povey, M. & York, D. (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9(3), 479–489. DOI: 10.1007/s11051-006-9150-1.10.1007/s11051-006-9150-1
  13. 13. Pachla, A., Lendzion-Bielun, Z., Moszynski, D., Markowska-Szczupak, A., Narkiewicz, U., Wrobel, R.J., Guskos, N. & Zołnierkiewicz, G. (2016). Synthesis and antibacterial properties of Fe3O4-Ag nanostructures. Pol. J. Chem. Tech. 18(4), 110–116. DOI: 10.1515/pjct-2016-0079.10.1515/pjct-2016-0079
  14. 14. Dizaj, S.M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M.H. & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C. 44, 278–284. DOI: 10.1016/j.msec.2014.08.031.10.1016/j.msec.2014.08.03125280707
  15. 15. Hezaveh, H. & Muhamad, I.I. (2012). Impact of metal oxide nanoparticles in oral release properties of pH-sensitive hydrogel nanocomposites. Int. J. Biol. Macromolec. 50, 1334–1340. DOI: 10.1016/j.ijbiomac.2012.03.017.10.1016/j.ijbiomac.2012.03.01722484730
  16. 16. Hotze, E.M., Phenrat, T. & Lowry, G. V. (2010). Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. J. Environ. Qual. 39(6), 1909–1924.10.2134/jeq2009.0462
  17. 17. Safaei, M. & Taran, M. (2017). Fabrication, characterization, and antifungal activity of sodium hyaluronate-TiO2 bionanocomposite against Aspergillus niger. Materials Letters, 207, 113–116. DOI: 10.1016/j.matlet.2017.07.038.10.1016/j.matlet.2017.07.038
  18. 18. Safaei, M., Taran, M. & Imani M.M. (2019). Preparation, structural characterization, thermal properties and antifungal activity of alginate-CuO bionanocomposite. Mater. Sci. Eng. C. 101, 323–329. DOI: 10.1016/j.msec.2019.03.108.10.1016/j.msec.2019.03.10831029325
  19. 19. Klemm, D., Heublein, B., Fink, H.P. & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. A. Chem. Int. Ed. 44(22), 3358–3393. DOI: 10.1002/anie.20046058710.1002/anie.20046058715861454
  20. 20. Fryczkowska, B. & Wiechniak, K. (2017). Preparation and properties of cellulose membranes with graphene oxide addition. Pol. J. Chem. Tech. 19(4), 41–49. DOI: 10.1515/pjct-2017-0066.10.1515/pjct-2017-0066
  21. 21. Hu, W., Chen, S., Yang, J., Li, Z. & Wang, H. (2014). Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr. Polym. 101, 1043–1060. DOI: 10.1016/j.carbpol.2013.09.102.10.1016/j.carbpol.2013.09.10224299873
  22. 22. Petersen, N. & Gatenholm, P. (2011). Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl. Microbiol. Biotechnol. 91(5), 1277. DOI: 10.1007/s00253-011-3432-y.10.1007/s00253-011-3432-y21744133
  23. 23. Shao, W., Liu, H., Liu, X., Sun, H., Wang, S. & Zhang, R. (2015). pH-responsive release behavior and anti-bacterial activity of bacterial cellulose-silver nanocomposites. Int. J. Biol. Macromolec. 76, 209–217. DOI: 10.1016/j.ijbiomac.2015.02.048.10.1016/j.ijbiomac.2015.02.04825748842
  24. 24. Li, B., Zhang, Y., Yang, Y., Qiu, W., Wang, X., Liu, B., Wang, Y. & Sun, G. (2016). Synthesis, characterization, and antibacterial activity of chitosan/TiO2 nanocomposite against Xanthomonas oryzae pv. oryzae. Carbohydr. Polym. 152, 825–831. DOI: 10.1016/j.carbpol.2016.07.07010.1016/j.carbpol.2016.07.07027516334
  25. 25. Nguyen, V.T., Flanagan, B., Gidley, M.J. & Dykes, G.A. (2008). Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr. Microbiol. 57, 449–453. DOI: 10.1007/s00284-008-9228-310.1007/s00284-008-9228-318704575
  26. 26. Pathania, D., Kumari, M. & Gupta, V.K. (2015) Fabrication of ZnS–cellulose nanocomposite for drug delivery, antibacterial and photocatalytic activity. Mater. Des. 87, 1056–1064. DOI: 10.1016/j.matdes.2015.08.10310.1016/j.matdes.2015.08.103
  27. 27. Safaei, M. & Taran, M. (2017). Optimal conditions for producing bactericidal sodium hyaluronate-TiO2 bionanocomposite and its characterization. Int. J. Biol. Macromolec. 104, 449–456. DOI: 10.1016/j.ijbiomac.2017.06.016.10.1016/j.ijbiomac.2017.06.01628619641
  28. 28. Muhamad, I.I., Asgharzadehahmadi, S.A., Zaidel, D.N. A. & Supriyanto E. (2013). Characterisation and Evaluation of Antibacterial Properties of Polyacrylamide Based Hydrogel Containing Magnesium Oxide Nanoparticles. Int. J. Biol. Biomed. Eng. 7(3), 108–113.
  29. 29. Jin, T. & He, Y. (2011). Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J. Nanopart. Res. 13(12), 6877–6885. DOI: 10.1007/s11051-011-0595-5.10.1007/s11051-011-0595-5
  30. 30. Leung, Y.H., Ng, A., Xu, X., Shen, Z., Gethings, L.A., Wong, M.T., Chan, C., Guo, M.Y., Ng, Y.H., Djurisic, A.B. & Lee, P.K. (2014). Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small, 10(6), 1171–1183. DOI: 10.1002/smll.201302434.10.1002/smll.20130243424344000
  31. 31. Tang, Z.X. & Lv, B.F. (2014). MgO nanoparticles as antibacterial agent: preparation and activity. Braz. J. Chem. Eng. 31(3), 591–601. DOI: 10.1590/0104-6632.20140313s00002813.10.1590/0104-6632.20140313s00002813
  32. 32. Yadollahi, M., Gholamali, I., Namazi, H. & Aghazadeh, M. (2015). Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int. J. Biol. Macromolec. 74, 136–141. DOI: 10.1016/j.ijbiomac.2014.11.032.10.1016/j.ijbiomac.2014.11.03225524743
  33. 33. Zajac, A., Hanuza, J., Wandas, M. & Dyminska, L. (2015). Determination of N-acetylation degree in chitosan using Raman spectroscopy. Spectrochim. Acta A. 134, 114–120. DOI: 10.1016/j.saa.2014.06.071.10.1016/j.saa.2014.06.07125011040
  34. 34. Sharma, R.K. (2012). A study in thermal properties of graft copolymers of cellulose and methacrylates. Adv. Appl. Sci. Res. 3(6), 3961–3969.
Language: English
Page range: 116 - 122
Published on: Dec 31, 2019
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Mohsen Safaei, Mojtaba Taran, Mohammad Moslem Imani, Hedaiat Moradpoor, Farzad Rezaei, Ladan Jamshidy, Razieh Rezaei, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.