Have a personal or library account? Click to login
Synthesis of an optical catalyst for cracking contaminating dyes in the wastewater of factories using indium oxide in nanometer and usage in agriculture Cover

Synthesis of an optical catalyst for cracking contaminating dyes in the wastewater of factories using indium oxide in nanometer and usage in agriculture

Open Access
|Dec 2019

References

  1. 1. Cisneros, R.L., Espinoza, A.G. & Litter, M.I. (2002). Photodegradation of an azo dye of the textile industry. Chemosphere, 48(4), 393–399. https://doi.org/10.1016/S0045-6535(02)00117-0.10.1016/S0045-6535(02)00117-0
  2. 2. Lee, Y.H. & Pavlostathis, S.G. (2004). Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions. Water Res., 38(7), 1838–1852. https://doi.org/10.1016/j.watres.2003.12.028.10.1016/j.watres.2003.12.028
  3. 3. Xie, S., Ren, W., Qiao, C., Tong, K., Sun, J., Zhang, M., Liu, X. & Zhang, Z. (2018). An ele ctrochemi cal adsorp tion metho d for the reuse of w aste wate r-based drilling fluids. Natural Gas Industry B, 5(5), 508–512. https://doi.org/10.1016/j.ngib.2018.03.005.10.1016/j.ngib.2018.03.005
  4. 4. Zhao, Z., Geng, C., Yang, C., Cui, F. & Liang, Z. (2018). A novel flake-ball-like magnetic Fe3O4/γ-MnO2 meso-porous nano-composite: Adsorption of fluorinion and effect of water chemistry. Chemosphere, 209, 173–181. https://doi.org/10.1016/j.chemosphere.2018.06.104.10.1016/j.chemosphere.2018.06.104
  5. 5. Radhakrishnan, A., Rejani, P., Khan, J.S. & Beena, B. (2016). Effect of annealing on the spectral and optical characteristics of nano ZnO: Evaluation of adsorption of toxic metal ions from industrial waste water. Ecotoxicology and Environmental Safety, 133, 457–465. https://doi.org/10.1016/j.ecoenv.2016.08.001.10.1016/j.ecoenv.2016.08.001
  6. 6. Basheer, Al Arsh. (2018). New generation nano-adsorbents for the removal of emerging contaminants in water. J. Molec. Liquids, 261, 583–593.10.1016/j.molliq.2018.04.021
  7. 7. Mehrotra, R.C. & Bohra, R. (1983). Metal Carboxylates, Academic Press, London.
  8. 8. Brusau, E.V., Pedregosa, J.C., Narda, G.E., Ayala, E.P. & Oliveira, E.A. (2004). Vibrational and thermal study of hexaaquatris (malonato) dieuropium (III) dihydrate. J. Arg. Chem. Soc., 92(1/3), 43–52.
  9. 9. Gushchina, T.N. & Kotenko, G.A. (1983). Koord. Khim., 12(3), 325.
  10. 10. Brzyska, W. & Paszkowska, B. (1998). Studies on the Thermal Decomposition of Rare Earth Caproates. J. Thermal Anal., 51, 561–566. https://doi.org/10.1007/BF03340193.10.1007/BF03340193
  11. 11. Doyle, A., Felcman, J., Gambardella, M., Verani, C.N. & Tristao, M.L.B. (2000). Anhydrous copper(II) hexanoate from cuprous and cupric oxides. The crystal and molecular structure of Cu2(O2CC5H11)4. Polyhedron, 19(26/27), 2621–2627. https://doi.org/10.1016/S0277-5387(00)00568-4.10.1016/S0277-5387(00)00568-4
  12. 12. Pietsch, R. (1971). Untersuchungen über die extraktion von thorium, blei und eisen (III) als verbindungen der capronsäure. Anal. Chim. Acta, 53(2), 287–294. https://doi.org/10.1016/S0003-2670(01)82087-0.10.1016/S0003-2670(01)82087-0
  13. 13. Kolomiets, L.L., Lysenko, O.V. & Pyatnitskii, I.V. (1988). Photoelectric counter of disperse particles. Z. Anal. Khim., 43(10), 1773.
  14. 14. Pyatnitskii, I.V., Kolomeits, L.L., Lysenko, O.V. & Sobko, M.G. (1990). Z. Anal. Khim., 45(1), 56.
  15. 15. Kopacz, S., Szantula, J. & Pardela, T.Z. (1989). Prikladoni Khim, 62(11), 2535.
  16. 16. Mazouchi, M., Sarkar, K., Purahmad, M., Farid, S. & Dutta, M. (2018). Photoconduction mechanism of ultra-long indium oxide nanowires. Solid-State Electronics, 148, 58–62. https://doi.org/10.1016/j.sse.2018.07.003.10.1016/j.sse.2018.07.003
  17. 17. Du, X. & Man, B. (2018). Effect of growth temperature on the structural and optoelectronic properties of epitaxial indium oxide films. J. Crystal Growth, 499, 18–23. https://doi.org/10.1016/j.jcrysgro.2018.07.033.10.1016/j.jcrysgro.2018.07.033
  18. 18. Fuchs, F. & Bechstedt, F. (2008). Indium-oxide polymorphs from first principles, Quasi particle electronic states. Phys. Rev., 77(4), 55107–55109. https://doi.org/10.1103/PhysRevB.77.155107.10.1103/PhysRevB.77.155107
  19. 19. Li, C., Zhang, D., Han, S., Liu, X., Tang, T. & Zhou, C. (2003). Diameter-Controlled Growth of Single-Crystalline In2O3Nanowires and Their Electronic Properties. Adv Mater., 15(2), 143–146. https://doi.org/10.1002/adma.200390029.10.1002/adma.200390029
  20. 20. Falcony, C., Kirtley, J.R., Dimaria, D.J., Ma, T.P. & Chen, T.C. (1985). Electroluminescence emission from indium oxide and indium-tin-oxide. J. Applied Phys., 58, 3556–3558. https://doi.org/10.1063/1.335730.10.1063/1.335730
  21. 21. Mane, R.S., Pathan, H.M., Lokhande, C.D. & Han, S.H. (2006). An effective use of nanocrystalline CdO thin films in dye-sensitized solar cells. Solar Energy, 80(2), 185–190. https://doi.org/10.1016/j.solener.2005.08.013.10.1016/j.solener.2005.08.013
  22. 22. Zhang, D., Liu, Z., Li, C., Tang, T., Liu, X., Han, S., Lei, B. & Zhou, C. (2004). Detection of NO2 down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices. Nano. Lett., 4(10), 1919–1924. https://doi.org/10.1021/nl0489283.10.1021/nl0489283
  23. 23. Karazhanov, S.Z., Ravindran, P., Vajeeston, P., Ulyashin, A., Finstad, T.G. & Fjellvag, H. (2007). Phase stability, electronic structure, and optical properties of indium oxide polytypes. Phys. Rev. B, 76, 75129–75131. https://doi.org/10.1103/PhysRevB.76.075129.10.1103/PhysRevB.76.075129
  24. 24. Lin, S.E. & Wei, W.C.J. (2008). Synthesis and Investigation of Submicrometer Spherical Indium Oxide Particles. J. Am. Ceram. Soc., 91(4), 1121–1128. https://doi.org/10.1111/j.1551-2916.2008.02266.x.10.1111/j.1551-2916.2008.02266.x
  25. 25. Chu, D.Y.P., Zeng, D.J. & Xu, J. (2007). Tuning the phase and morphology of In2O3 nanocrystals via simple solution routes. Nanotechnology. 18(43), 5605–5609.10.1088/0957-4484/18/43/435605
  26. 26. Rey, J.F.Q., Plivelic, T.S., Rocha, R.A., Tadokoro, S.K., Torriani, I. & Muccillo, E.N.S. (2005). Synthesis of In2O3nanoparticles by thermal decomposition of a citrate gel precursor. J. Nanopart. Res., 7(2), 203–208. https://doi.org/10.1007/s11051-004-7899-7.10.1007/s11051-004-7899-7
  27. 27. Geary, W.J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev., 7(1), 81–122. https://doi.org/10.1016/S0010-8545(00)80009-0.10.1016/S0010-8545(00)80009-0
  28. 28. Deacon, G.B. & Phillips, R.J. (1980). Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev., 33, 227–250. https://doi.org/10.1016/S0010-8545(00)80455-5.10.1016/S0010-8545(00)80455-5
  29. 29. Alcock, N.W., Culver, J. & Roe, S.M. (1992). The Effects of Cations and Anions on the Ionic of the development of organic substitution methods. J. Chem. Soc. Dalton Trans., 1447.
  30. 30. Nakamoto, K. (1997). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York.
  31. 31. Dunn, D.D. & Hall, R.H. (1975). Purines, pyrimidines, nucleosides, and nucleotides: Physical constants and spectral properties, in G.D. Fasman (Ed.), Handbook of Biochemistry and Molecular Biology, 3rd ed., Nucleic Acids, Vol. 1, CRC Press, Cleveland, Ohio, pp. 65–215.
  32. 32. Holm, R.H. & Cotton, F.A. (1958). Spectral Investigations of Metal Complexes of β-Diketones. I. Nuclear Magnetic Resonance and Ultraviolet Spectra of Acetylacetonates. J. Am. Chem. Soc., 80, 5658. https://doi.org/10.1021/ja01554a020.10.1021/ja01554a020
  33. 33. Cotton, F.A. & Wilkinson, C.W. (1972). Advanced Inorganic Chemistry, 3rd Ed, Interscience Publisher, New York.
  34. 34. Refat, M.S., El-Korashy, S.A., Kumar, D.N. & Ahmed, A.S. (2008). FTIR, magnetic, 1H NMR spectral and thermal studies of some chelates of caproic acid: Inhibitory effect on different kinds of bacteria. Spectrochimica Acta Part A, 70(1), 217–233. https://doi.org/10.1016/j.saa.2007.07.036.10.1016/j.saa.2007.07.036
  35. 35. Coats, A.W. & Redfern, J.P. (1964). Kinetic Parameters from Thermogravimetric Data. Nature, 201, 68–69.10.1038/201068a0
  36. 36. Horowitz, H.W. & Metzger, G. (1963). A New Analysis of Thermogravimetric Traces. Anal. Chem., 35, 1464–1468. https://doi.org/10.1021/ac60203a01310.1021/ac60203a013
  37. 37. Zsako, J. (1968). Kinetic analysis of thermogravimetric data. J. Phy. Chem., 72(7), 2406–2411. https://doi.org/10.1021/j100853a022.10.1021/j100853a022
  38. 38. Sharp, J.H. & Wentworth, S.A. (1969). Kinetic analysis of thermogravimetric data. Analyt. Chem., 41(14), 2060–2062. https://doi.org/10.1021/ac50159a046.10.1021/ac50159a046
  39. 39. Wendlandt, W.W. (1974). Thermal Methods of Analysis, John Wiley & Sons, New York, NY, USA, 2nd edition.
  40. 40. Cullity, B.D. (1978). Elements of X-Ray Diffraction, Second Edition, Addison-Wesley Publishing Company, ch. 5.
  41. 41. Nyquist, R.A. & Kagel, R.O. (1971). In: Infrared Spectra of Inorganic Compounds. Academic Press, New York, Vol. 4.10.1016/B978-0-12-523450-4.50005-5
  42. 42. Keller, R.J. (1982). In: The Sigma Library of FTIR Spectra, Sigma Chemical, St. Louis, Vol. 2.
  43. 43. Mondal, A. & Ram, S. (2004). Reconstructive phase formation of ZrO2nanoparticles in a new orthorhombic crystal structure from an energized porous ZrO(OH)2·xH2O precursor. Ceramics International, 30, 239. https://doi.org/10.1016/S0272-8842(03)00095-6.10.1016/S0272-8842(03)00095-6
  44. 44. Mott, N.F. & Davis, E.A. (1979). Electronic Processes in NonCrystalline Materials, 2nd ed., Clarendon Press, Oxford.
  45. 45. Li, C., Zhang, D., Han, S., Liu, X., Tang, T., Lei, B., Liu, Z. & Zhou, C. (2003). Synthesis, Electronic Properties, and Applications of Indium Oxide Nanowires. Ann. N.Y. Acad. Sci., 1006, 104–121. DOI: 10.1196/annals.1292.007.10.1196/annals.1292.00714976013
  46. 46. Sreenivas, K., Rao, T. & Mansingh, A. (1985). Preparation and characterization of rf sputtered indium tin oxide films. J. Appl. Phys., 57, 384–392. https://doi.org/10.1063/1.335481.10.1063/1.335481
  47. 47. Shigesato, Y., Takaki, S. & Haranoh, T. (1992). Electrical and structural properties of low resistivity tin-doped indium oxide films. J. Appl. Phys., 71, 3356–3364. https://doi.org/10.1063/1.350931.10.1063/1.350931
  48. 48. Rey, J.F.Q., Plivelic, T.S., Rocha, R.A., Tadokoro, S.K., Torriani, I. & Muccillo, E.N.S. (2005). Synthesis of In2O3nanoparticles by thermal decomposition of a citrate gel precursor. J. Nanoparticle Res., 7, 203–208. https://doi.org/10.1007/s11051-004-7899-7.10.1007/s11051-004-7899-7
  49. 49. Ghanizadeh, G.H. & Asgari, G. (2009). Removal of Methylene Blue Dye from Synthetic Wastewater with Bone Char. Iran. J. Health Environ., 2, 104–113. http://ijhe.tums.ac.ir/article-1-159-en.html.
  50. 50. Farzin, N., deh Hossein, N., Shahram, N., Asif, M., Inderjeet, T., Shilpi, A. & Kumar, G.V. (2016). Removal of malachite green from aqueous solutions by cuprous iodide– cupric oxide nano-composite loaded on activated carbon as a new sorbent for solid phase extraction: Isotherm, kinetics and thermodynamic studies. J. Mol. Liq., 213, 360–368. https://doi.org/10.1016/j.molliq.2015.07.058.10.1016/j.molliq.2015.07.058
  51. 51. Tang, C.W. (2013). Study of Photocatalytic Degradation of Methyl Orange on Different Morphologies of ZnO Catalysts. Modern Research in Catalysis, 2, 19–24. http://dx.doi.org/10.4236/mrc.2013.22003.10.4236/mrc.2013.22003
Language: English
Page range: 98 - 105
Published on: Dec 31, 2019
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Ishaq F. E. Ahmed, Ahmed I. El-Shenawy, Moamen S. Refat, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.