Have a personal or library account? Click to login
Comparative studies on the adsorption of Pb(II) ions by fly ash and slag obtained from CFBC technology Cover

Comparative studies on the adsorption of Pb(II) ions by fly ash and slag obtained from CFBC technology

Open Access
|Dec 2019

References

  1. 1. WHO (2006), In: Guidelines for Drinking-water Quality, Vol. 1. WHO Library Cataloguing-in-Publication Data, Geneva.
  2. 2. Kalak, T. & Strus, B. (2014). Influence of Selected Surfactants and High-Octane Oxygen Components on Water Content, Electrolytic Conductivity in Gasoline, and Interfacial Tension in the Water/Gasoline System. Energy&Fuels. 28, 1926−1939. DOI: 10.1021/ef4018338.10.1021/ef4018338
  3. 3. Wani, A.L., Ara, A. & Usmani, J.A. (2015). Lead toxicity: a review. Interdiscip. toxicol. 8, 55–64. DOI: 10.1515/intox-2015-0009.10.1515/intox-2015-0009496189827486361
  4. 4. ATSDR’s Substance Priority List (2017), The Agency for Toxic Substances and Disease Registry (ATSDR).
  5. 5. Azimi, A., Azari, A., Rezakazemi, M. & Ansarpour, M. (2017). Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews. 4, 1–24. DOI: 10.1002/cben.201600010.10.1002/cben.201600010
  6. 6. Young, R.T. (2003). Adsorbents: fundamentals and applications. John Wiley & Sons, Inc., Hoboken, New Jersey, USA, ISBN 0-471-29741-0.10.1002/047144409X
  7. 7. Kalak, T., Dudczak, J. & Cierpiszewski, R. (2015). Adsorption behaviour of copper ions on elderberry, gooseberry and paprika waste from aqueous solutions. Proceedings of 12th International Interdisciplinary Meeting on Bioanalysis (CECE), Brno, Czech Republic, 123–127.
  8. 8. Kalak, T. & Cierpiszewski, R. (2018). Adsorptive removal of copper and cadmium ions using fly ash resulting from CFBC technology. Proceedings of 15th International Interdisciplinary Meeting on Bioanalysis (CECE), Brno, Czech Republic, 177–181.
  9. 9. Environmental Protection 2014. Statistical Yearbook of GUS, Warsaw, 2014.
  10. 10. Milieu Ltd, WRc, RPA and DG Environment (2008). Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land. Final report for the European Commission.
  11. 11. AKPGO, Update National Waste Management Plan 2014, Warsaw, 2015.
  12. 12. Nowak, B., Aschenbrenner, P. & Winter, F. (2013). Heavy metal removal from sewage sludge ash and municipal solid waste fly ash – A comparison. Fuel Process. Technol. 105, 195–201. DOI: 10.1016/j.fuproc.2011.06.027.10.1016/j.fuproc.2011.06.027
  13. 13. Wassilkowska, A., Czaplicka-Kotas, A., Bielski, A., Zielina, M. (2014). An analysis of the elemental composition of micro-samples using EDS technique. Tech. Trans. 18, 133–148. DOI: 10.4467/2353737XCT.14.283.3371.10.4467/2353737XCT.14.283.3371
  14. 14. Itskosa, G., Koukouzasa, N., Vasilatosb, C., Megremib, I. & Moutsatsouc, A. (2010). Comparative uptake study of toxic elements from aqueous media by the different particlesize fractions of fly ash. J. Hazard. Mater. 183, 787–792. DOI: 10.1016/j.jhazmat.2010.07.095.10.1016/j.jhazmat.2010.07.09520724071
  15. 15. Yadla, S.V., Sridevi, V. & Chandana Lakshmi, M.V.V. (2012). Adsorption Performance Of Fly Ash For The Removal Of Lead. Int. J. Eng. Res. Technol. 1, 1–7. ISSN: 2278-0181.
  16. 16. Bhardwaj, R., Chen, X. & Vidic, R.D. (2009). Impact of fly ash composition on mercury speciation in simulated flue gas. J. Air Waste Manage. Assoc. 59(11), 1331–1338. DOI: 10.3155/1047-3289.59.11.1331.10.3155/1047-3289.59.11.133119947114
  17. 17. Thiele, A., Török, B. & Költő, L. (2012). Energy dispersive X-ray analysis (SEM-EDS) on slag samples from medievalbloomery workshops – the role of phosphorus in the archaeometallurgy of iron in Somogy County, Hungary, Proceedings of the 39th International Symposium for Archaeometry, Leuven, 1–9.
  18. 18. Kong, D.L.Y., Sanjayan, J.G. & Sagoe-Crentsil, K. (2007). Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res. 37, 1583–1589. DOI: 10.1016/j.cemconres.2007.08.021.10.1016/j.cemconres.2007.08.021
  19. 19. Temuujin, J., & Riessen, A.V. (2009). Effect of fly ash preliminary calcination on the properties of geopolymer. J. Hazard. Mater. 164, 634-639. DOI: 10.1016/j.jhazmat.2008.08.065.10.1016/j.jhazmat.2008.08.06518824295
  20. 20. Thokchom, S., Ghosh, P. and Ghosh, S. (2009). Resistance of Fly Ash Based Geopolymer Mortars in Sulfuric Acid. ARPN J. Eng. Appl. Sci. 4, 65–70. ISSN 1819-6608.
  21. 21. Hardjito, D., Wallah, S.E., Sumajouw, D.M.J. & Rangan, B.V. (2005). Fly ash-based geopolymer concrete. Aust. J. Struct. Eng. 6, 77–86. DOI: 10.9790/1684-1404071216.10.9790/1684-1404071216
  22. 22. Mustafa, A.M., Kamarudin, H., Omar Karem, A.K.A., Ruzaidi, C.M., Rafiza, A.R. & Norazian, M.N. (2011). Optimization Of Alkaline Activator/Fly Ash Ratio On The Compressive Strength Of Manufacturing Fly Ash-Based Geopolymer. 2nd International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2011), Singapore.
  23. 23. Alinnor, I.J. (2007). Adsorption of heavy metal ions from aqueous solution by fly ash, Fuel. 86, 853–857.10.1016/j.fuel.2006.08.019
  24. 24. Bieniek. J., Ściubidło, A. & Izabela Majchrzak-Kucęba, I. (2013). Properties of fly ash derived from coal combustion in air and in oxygen enriched atmosphere in a pilot plant installation Oxy-Fuel CFB 0,1 MW, Energetyka 11/2013 (713), 821–826. ISSN 0013-7294.
  25. 25. Paya, J., Monzo, J., Borrachero, M.V., Perris, E. & Amahjour, F. (1998). Thermogravimetric methods for determinig carbon content in fly ashes, Cem. Concr. Res. 28(5), 675–686. DOI: 10.1016/S0008-8846(98)00030-1.10.1016/S0008-8846(98)00030-1
  26. 26. Mohebbi, M., Rajabipour, F. & Scheetz, B.E. (2015). Reliability of Loss on Ignition (LOI) Test for Determining the Unburned Carbon Content in Fly Ash. World of Coal Ash (WOCA) Conference in Nasvhill.
  27. 27. Bansal, R.C. & Goyal, M. (2005). Activated Carbon Adsorption. CRC Press, Taylor and Francis Group, LLC, Boca Raton, FL. DOI: 10.1201/9781420028812.10.1201/9781420028812
  28. 28. Sing, K.S.W. (1982). Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 54, 2201–2218. DOI: 10.1351/pac198254112201.10.1351/pac198254112201
  29. 29. Liu, J., Qiu, Q., Xing, F. & Pan, D. (2014). Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete. Mater. 7, 4282–4296. DOI: 10.3390/ma7064282.10.3390/7064282
  30. 30. Ho, YS. (2005). Effect of pH on lead removal from water using tree fern as the sorbent. Bioresour Technol. 96(11): 1292–1296. DOI: 10.1016/j.biortech.2004.10.011.10.1016/j.biortech.2004.10.01115734317
  31. 31. Paliulis, D. & Bubėnaitė, J. (2014). Effect of pH for lead removal from polluted water applying peat. The 9th International Conference „Environmental Engineering 2014”. DOI: 10.3846/enviro.2014.042.10.3846/enviro.2014.042
  32. 32. Weng, C.H. & Huang, C.P. (2004). Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloid Surf. A. 247, 137–143. DOI: 10.1016/j.colsurfa.2004.08.050.10.1016/j.colsurfa.2004.08.050
  33. 33. Adebowale, K.O., Unuabonah, I.E. & Olu-Owolabi, B.I. (2006). The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. J. Hazard. Mater. 134, 130–139. DOI: 10.1016/j.jhazmat.2005.10.056.10.1016/j.jhazmat.2005.10.05616343763
  34. 34. Sari, A., Tuzen, M. & Citak, D. (2007). Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. J. Hazard. Mater. 149, 283–291. DOI: 10.1016/j.jhazmat.2007.03.078.10.1016/j.jhazmat.2007.03.07817478040
  35. 35. Kalak, T. & Cierpiszewski, R. (2015). Correlation analysis between particulate soil removal and surface properties of laundry detergent solutions. Text. Res. J. 85, 1884–1906. DOI: 10.1177/0040517515578329.10.1177/0040517515578329
  36. 36. Kavitha, D. & Namasivayam, C. (2007). Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour. Technol. 98, 14–21. DOI: 10.1016/j.biortech.2005.12.008.10.1016/j.biortech.2005.12.008
  37. 37. Ho, Y.S. & McKay, G. (1999). Psudo-second order model for sorption processes, Process Biochem. 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.10.1016/S0032-9592(98)00112-5
  38. 38. Wong, K.K., Lee, C.K., Low, K.S. & Haron, M.J. (2003). Removal of Cu(II) and Pb(II) by tartaric acid modified rice husk from aqueous solutions. Chemosphere. 50, 23-28. DOI: 10.1016/S0045-6535(02)00598-2.10.1016/S0045-6535(02)00598-2
  39. 39. Wang, S.B. & Ariyanto, E. (2007). Competitive adsorption of malachite green and Pb ions on natural zeolite. J. Colloid Interf. Sci. 314, 25–31. DOI: 10.1016/j.jcis.2007.05.032.10.1016/j.jcis.2007.05.03217543322
  40. 40. Kumar, P.S., Vincent, C., Kirthika, K. & Kumar, K.S. (2010). Kinetics and equilibrium studies of Pb2+ ion removal from aqueous solutions by use of nano-silversol-coated activated carbon. Braz. J. Chem. Eng. 27, 339–346. DOI: 10.1590/S0104-66322010000200012.10.1590/S0104-66322010000200012
  41. 41. Ribeiro, J., DaBoit, K., Flores, D., Kronbauer, M.A. & Silva, L.F. (2013). Extensive FE-SEM/EDS, HR-TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash, Science of the Total Environment. 452–453C, 98–107. DOI: 10.1016/j.scitotenv.2013.02.010.10.1016/j.scitotenv.2013.02.01023500403
  42. 42. Ueda, S., Koyo, H., Ikeda, T., Kariya, Y. & Maeda, M. (2000). Infrared emission spectra of CaF2-CaO-SiO2 melt. ISIJ Int. 40(8), 739–743. DOI: 10.2355/isijinternational.40.739.10.2355/isijinternational.40.739
  43. 43. Iliashevsky, O., Rubinov, E., Yagen, Y. & Gottlieb, M. (2016). Functionalization of Silica Surface with UV-Active Molecules by Multivalent Organosilicon Spacer. Open J. Inorg. Chem. 6, 163–174. DOI: 10.4236/ojic.2016.63012 .10.4236/ojic.2016.63012
Language: English
Page range: 72 - 81
Published on: Dec 31, 2019
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Tomasz Kalak, Ryszard Cierpiszewski, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.