Have a personal or library account? Click to login
Antimicrobial materials properties based on ion-exchange 4A zeolite derivatives Cover

Antimicrobial materials properties based on ion-exchange 4A zeolite derivatives

Open Access
|Dec 2019

References

  1. 1. Boschetto, D.L., Lerin, L., Cansian, R., Pergher, S.B.C. & Di Luccio, M. (2012). Preparation and antimicrobial activity of polyethylene composite films with silver exchanged zeolite-Y. Chem. Eng. J. 204, 210–216. http://dx.doi.org/10.1016/j.cej.2012.07.11110.1016/j.cej.2012.07.111
  2. 2. Sánchez, M.J., Mauricio, J.E., Paredes, A.R., Gamero, P. & Cortés, D. (2017). Antimicrobial properties of ZSM-5 type zeolite functionalized with silver. Mater. Lett. 191, 65–68. http://dx.doi.org/10.1016/j.matlet.2017.01.03910.1016/j.matlet.2017.01.039
  3. 3. Gazzotti, S., Todisco, S.A., Picozzi, C., Ortenzi, M.A., Farina, H., Lesma, G. & Silvani, A. (2019). Eugenol-grafted aliphatic polyesters: Towards inherently antimicrobial PLA-based materials exploiting OCAs chemistry. Eur. Polym. J. 114, 369–379. https://doi.org/10.1016/j.eurpolymj.2019.03.00110.1016/j.eurpolymj.2019.03.001
  4. 4. Turalija, M., Bischof, S., Budimir, A. & Gaan, S. (2016). Antimicrobial PLA films from environment friendly additives. Compos. Part B: Engin. 102, 94–99. https://doi.org/10.1016/j.compositesb.2016.07.01710.1016/j.compositesb.2016.07.017
  5. 5. Braunwarth, H. & Brill, F.H.H. (2014). Antimicrobial efficacy of modern wound dressings: Oligodynamic bactericidal versus hydrophobic adsorption effect. Wound Medicine. 5, 16–20. http://dx.doi.org/10.1016/j.wndm.2014.04.00310.1016/j.wndm.2014.04.003
  6. 6. Breck, D.W. (1984). Zeolite molecular sieves: structure, chemistry, and use ed (Universidade de Michigan), pp. 771.
  7. 7. McCusker, L.B., Olson, D.H. & Baerlocher, C. (2007). Atlas of Zeolite Framework Types 6ª ed (Elsevier Science). ISBN: 978-0-444-53064-6.
  8. 8. Kulprathipanja, S. (2010). Zeolites in Industrial Separation and Catalysis. pp. 618. Wiley.10.1002/9783527629565
  9. 9. Melo, C.R., Riella, H.G., Kuhnen, N.C., Angioletto, E., Melo, A.R., Bernardin, A.M., da Rocha, M.R. & da Silva, L. (2012). Synthesis of 4A zeolites from kaolin for obtaining 5A zeolites through ionic exchange for adsorption of arsenic. Mater. Sci. Engin., B. 177(4), 345–349. http://dx.doi.org/10.1016/j.mseb.2012.01.01510.1016/j.mseb.2012.01.015
  10. 10. Rivera-Garza, M., Olguín, M.T., García-Sosa, I., Alcántara, D. & Rodríguez-Fuentes, G. (2000). Silver supported on natural Mexican zeolite as an antibacterial material. Micropor. Mesopor. Mat. 39(3), 431–444. http://dx.doi.org/10.1016/S1387-1811(00)00217-110.1016/S1387-1811(00)00217-1
  11. 11. Tekin, R. & Bac, N. (2016). Antimicrobial behavior of ion-exchanged zeolite X containing fragrance. Micropor. Mesopor. Mat. 234, 55–60. http://dx.doi.org/10.1016/j.micromeso.2016.07.00610.1016/j.micromeso.2016.07.006
  12. 12. Ferreira, L., Fonseca, A.M., Botelho, G., Aguiar, C.A. & Neves, I.C. (2012). Antimicrobial activity of faujasite zeolites doped with silver. Micropor. Mesopor. Mat. 160, 126–132. http://dx.doi.org/10.1016/j.micromeso.2012.05.00610.1016/j.micromeso.2012.05.006
  13. 13. Fang, M., Chen, J.H., Xu, X.L., Yang, P.H. & Hildebrand, H.F. (2006). Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int. J. Antimicrob. Agents. 27(6), 513–517. http://dx.doi.org/10.1016/j.ijantimicag.2006.01.00810.1016/j.ijantimicag.2006.01.008
  14. 14. Kalinowska, M., Piekut, J., Bruss, A., Follet, C., Sienkiewicz-Gromiuk, J., Świsłocka, R., Rzączyńska, Z. & Lewandowski, W. (2014). Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV/VIS), thermogravimetric and antimicrobial studies of Ca(II), Mn(II), Cu(II), Zn(II) and Cd(II) complexes of ferulic acid. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 122, 631–638. http://dx.doi.org/10.1016/j.saa.2013.11.08910.1016/j.saa.2013.11.089
  15. 15. Zhang, B., Lin, Y., Tang, X., He, S. & Xie, G. (2010). Synthesis, characterization, and antimicrobial properties of Cu-inorganic antibacterial material containing lanthanum. J. Rare Earths. 28, 451–455. http://dx.doi.org/10.1016/S1002-0721(10)60346-810.1016/S1002-0721(10)60346-8
  16. 16. Savi, G.D., Cardoso, W.A., Furtado, B.G., Bortolotto, T., Da Agostin, L.O.V., Nones, J., Zanoni, E.T., Montedo, O.R.K. & Angioletto, E. (2017). New ion-exchanged zeolite derivatives: Antifungal and antimycotoxin properties against Aspergillus flavus and aflatoxin B1. Mat. Res. Exp., 4, 085401. http://dx.doi.org/10.1088/2053-1591/aa84a510.1088/2053-1591/aa84a5
  17. 17. CLSI (2009). Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk susceptibility tests. Pennsylvania, USA., Wayne.
  18. 18. Balouiri, M., Sadiki, M. & Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. J. Pharmaceut. Anal. 6(2), 71–79. http://dx.doi.org/10.1016/j.jpha.2015.11.00510.1016/j.jpha.2015.11.005576244829403965
  19. 19. Santos, M.F., Oliveira, C.M., Tachinski, C.T., Fernandes, M.P., Pich, C.T., Angioletto, E., Riella, H.G. & Fiori, M.A. (2011). Bactericidal properties of bentonite treated with Ag+ and acid. Int. J. Miner. Process. 100(1), 51–53. http://dx.doi.org/10.1016/j.minpro.2011.04.01210.1016/j.minpro.2011.04.012
  20. 20. Rajabi, S., Ramazani, A., Hamidi, M. & Naji, T. (2015). Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU J. Pharm. Sci. 23(1), 20. http://dx.doi.org/10.1186/s40199-015-0105-x10.1186/s40199-015-0105-x434478925888940
  21. 21. Brix, K.V., Gerdes, R.M., Adams, W.J. & Grosell, M. (2006). Effects of copper, cadmium, and zinc on the hatching success of brine shrimp (Artemia franciscana). Arch. Environ. Contam. Toxicol. 51(4), 580–583. http://dx.doi.org/10.1007/s00244-005-0244-z10.1007/s00244-005-0244-z16897274
  22. 22. Charles, J., Sancey, B., Morin-Crini, N., Badot, P.-M., Degiorgi, F., Trunfio, G. & Crini, G. (2011). Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator. Ecotoxicol. Environ. Saf. 74(7), 2057–2064. https://doi.org/10.1016/j.ecoenv.2011.07.02510.1016/j.ecoenv.2011.07.02521835466
  23. 23. Netto, E., Madeira, R.A., Silveira, F.Z., Fiori, M.A., Angioleto, E., Pich, C.T. & Geremias, R. (2013). Evaluation of the toxic and genotoxic potential of acid mine drainage using physicochemical parameters and bioassays. Environ. Toxicol. Pharmacol. 35(3), 511–516. http://dx.doi.org/10.1016/j.etap.2013.02.00710.1016/j.etap.2013.02.00723518284
  24. 24. Luna, F.J. & Schuchardt, U. (2001). Modificação de zeólitas para uso em catálise. Quim. Nova. 24, 885–892.10.1590/S0100-40422001000600027
  25. 25. Demirci, S., Ustaoglu, Z., Yilmazer, G.A., Sahin, F. & Bac, N. (2014). Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms. Appl. Biochem. Biotechnol. 172(3), 1652–1662. http://dx.doi.org/10.1007/s12010-013-0647-710.1007/s12010-013-0647-7
  26. 26. Tapiero, H. & Tew, K.D. (2003). Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed. Pharmacother. 57(9), 399–411.10.1016/S0753-3322(03)00081-7
  27. 27. Alswat, A.A., Ahmad, M.B., Hussein, M.Z., Ibrahim, N.A. & Saleh, T.A. (2017). Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities. J. Mater. Sci. Technol. 33(8), 889–96. http://dx.doi.org/10.1016/j.jmst.2017.03.01510.1016/j.jmst.2017.03.015
  28. 28. Fanta, F.T., Dubale, A.A., Bebizuh, D.F. & Atlabachew, M. (2019). Copper doped zeolite composite for antimicrobial activity and heavy metal removal from waste water. BMC Chemistry. 13(1), 44. http://dx.doi.org/10.1186/s13065-019-0563-110.1186/s13065-019-0563-1666176731384792
  29. 29. Aguado, S., Quirós, J., Canivet, J., Farrusseng, D., Boltes, K. & Rosal, R. (2014). Antimicrobial activity of cobalt imidazolate metal–organic frameworks. Chemosphere. 113, 188–192. http://dx.doi.org/10.1016/j.chemosphere.2014.05.02910.1016/j.chemosphere.2014.05.02925065809
  30. 30. Savi, G.D., Cardoso, W.A., Furtado, B.G., Bortolotto, T., Zanoni, E.T., Scussel, R., Rezende, L.F., Avila, R.A.M., Montedo, O.R.K. & Angioletto, E. (2018). Antifungal activities against toxigenic Fusarium specie and deoxynivalenol adsorption capacity of ion-exchanged zeolites. J. Environ. Sci. Health, Part B, 53(3): 184–190. http://dx.doi.org/10.1080/03601234.2017.1405639.10.1080/03601234.2017.140563929286883
  31. 31. Tamayo, L., Azócar, M., Kogan, M., Riveros, A. & Páez, M. (2016). Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater. Sci. Engin.: C. 69, 1391–1409. http://dx.doi.org/10.1016/j.msec.2016.08.04110.1016/j.msec.2016.08.04127612841
  32. 32. Savi, G.D., Bortoluzzi, A.J. & Scussel, V.M. (2013). Antifungal properties of Zinc-compounds against toxigenic fungi and mycotoxin. Int. J. Food Sci. Technol. 48(9), 1834–1840. http://dx.doi.org/10.1111/ijfs.1215810.1111/ijfs.12158
  33. 33. Vitorino, H.A., Mantovanelli, L., Zanotto, F.P. & Esposito, B.P. (2015). Iron metallodrugs: stability, redox activity and toxicity against Artemia salina. PLoS One. 10(4), e0121997. http://dx.doi.org/10.1371/journal.pone.012199710.1371/journal.pone.0121997438834625849743
  34. 34. Arulvasu, C., Jennifer, S.M., Prabhu, D. & Chandhirasekar, D. (2014). Toxicity effect of silver nanoparticles in brine shrimp Artemia. Sci. World J.2014, 256919. http://dx.doi.org/10.1155/2014/25691910.1155/2014/256919391012224516361
  35. 35. Bortolotto, T., Bertoldo, J.B., da Silveira, F.Z., Defaveri, T.M., Silvano, J. & Pich, C.T. (2009). Evaluation of the toxic and genotoxic potential of landfill leachates using bioassays. Environ. Toxicol. Pharmacol. 28(2), 288–293. http://dx.doi.org/10.1016/j.etap.2009.05.00710.1016/j.etap.2009.05.00721784018
  36. 36. Rodrigues, L.C.d.A., Barbosa, S., Pazin, M., Maselli, B.d.S., Beijo, L.A. & Kummrow, F. (2013). Fitotoxicidade e citogenotoxicidade da água e sedimento de córrego urbano em bioensaio com Lactuca sativa. Rev. Bras. Eng. Agríc. 17, 1099–1108.10.1590/S1415-43662013001000012
  37. 37. Angele-Martinez, C., Nguyen, K.V., Ameer, F.S., Anker, J.N. & Brumaghim, J.L. (2017). Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology. 11(2), 278–288. http://dx.doi.org/10.1080/17435390.2017.129375010.1080/17435390.2017.1293750549415228248593
  38. 38. Wang, F. & Sayre, L.M. (1989). Oxidation of tertiary amine buffers by copper(II). Inorg. Chem. 28(2), 169–170. http://dx.doi.org/10.1021/ic00301a00110.1021/ic00301a001
  39. 39. Tachon, P. (1989). Ferric and cupric ions requirement for DNA single-strand breakage by H2O2. Free Radic. Res. Commun. 7(1), 1–10.10.3109/107157689090881552509299
  40. 40. Burrows, C.J. & Muller, J.G. (1998). Oxidative Nucleobase Modifications Leading to Strand Scission. Chem. Rev. 98(3), 1109–1152.10.1021/cr960421s11848927
Language: English
Page range: 31 - 39
Published on: Dec 31, 2019
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Willian A. Cardoso, Geovana D. Savi, Ana Carolina Feltrin, Carolina R.M. Marques, Everton Angioletto, Claus T. Pich, Reginaldo Geremias, Erlon Mendes, Elidio Angioletto, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.