Have a personal or library account? Click to login
New thiopyridine complexes: design, electrochemical preparation and biological assessment Cover

New thiopyridine complexes: design, electrochemical preparation and biological assessment

Open Access
|Dec 2019

References

  1. 1. Qadri, F., Svennerholm, A.M., Faruque, A.S.G. & Sack, R.B. (2005). Enterotoxigenic Escherichia coli in developing countries: epidemiology, microbiology, clinical features, treatment, and prevention. Clin Microbiol Rev 18, 465–483.10.1128/CMR.18.3.465-483.2005119596716020685
  2. 2. Dreyse, P.A., Isaacs, M.A., Iturriaga, P.E., Villagra, D.A., Aguirre, M.J., Kubiak, C.P., Glover, S.D. & Goeltz, J.C. (2010). Electrochemical preparation of conductive films of tetrapyridyl-porphyrins coordinated to four [Ru(5-NO2-phen)2Cl]+ groups. J. Electroanal. Chem. 648 98–104.10.1016/j.jelechem.2010.08.007
  3. 3. Nevase, M.C., Pawar, R.D., Munjal, P.S., Dongare, A.E. & Satkar, R.S. (2018). review on various molecule activity, biological activity and chemical activity of pyridine. Europ. J. Pharmac. Med. Res., 5(11), 184–192.
  4. 4. Jai, D., Nisha, B. & Suman, K. (2011). Synthesis and characterization of novel Organosilicon (IV) complexes with pyridine dicarboxylic acid and Mercapto pyridine carboxylic acid; Int. J. Res. Chem. Environ. 1, 50–56.
  5. 5. Prachayasittikul, S., Treeratanapiboon, L., Ruchirawat, S. & Prachayasittikul, V. (2009). novel activities of 1-adamantylthiopyridines as antibacterials, antimalarials and anticancers. EXCLI Journal, 8, 121–129.
  6. 6. Rodrigues, M.V.N., Corrêa, R.S., Vanzolini, K.L., Santos, D.S., Batista, A.A. & Cass, Q.B. (2015). Characterization and screening of tight binding inhibitors of xanthine oxidase: an on-flow assay. RSC Adv.,5, 37533–37538.10.1039/C5RA01741F
  7. 7. Schmid, W.F., Zorbas-Seifried, S., John, R.O., Arion, V.B., Jakupec, M.A., Roller, A., Galanski, M., Chiorescu, I., Zorbas, H. & Keppler, B.K. (2007). The first ruthenium-based paullones: syntheses, X-ray diffraction structures, and spectroscopic and antiproliferative properties in vitro. Inorg. Chem., 46, 3645–3656.10.1021/ic070098j17402728
  8. 8. Lima, B.A.V., Corrêa, R.S., Graminha, A.E., Kuznetsov, A., Ellena, J., Pavan, F.R., Leite, C.Q.F. & Batista, A.A. (2016). “Anti-Mycobacterium tuberculosis and Cytotoxicity Activities of Ruthenium(II)/Bipyridine/Diphosphine/Pyrimidine-2-thiolate Complexes: The Role of the Non-Coordinated N-Atom” J. Braz. Chem. Soc., 27(1), 30–40,; http://dx.doi.org/10.5935/0103-5053.20150237.10.5935/0103-5053.20150237
  9. 9. Kulkarni, A.D., Patil, S.A. & Badami, P.S. (2009). Electrochemical Properties of some Transition Metal Complexes: Synthesis, Characterization and In-vitro antimicrobial studies of Co (II), Ni(II), Cu(II), Mn(II) and Fe (III) Complexes. Int. J. Electrochem. Sci., 4, 717–729.10.1016/S1452-3981(23)15177-7
  10. 10. Medici, S., Peana, M., Nurchi, V.M., Lachowicz, J.I., Crisponi, G. & Zoroddu, M.A. (2015). Noble metals in medicine: Latest advances. Coord. Chem. Rev., 284, 329–350.10.1016/j.ccr.2014.08.002
  11. 11. Scheffler, H., You, Y. & Ott, I. (2010). Comparative studies on the cytotoxicity, cellular and nuclear uptake of a series of chloro gold(I) phosphine complexes. Polyhedron, 29, 66–69.10.1016/j.poly.2009.06.007
  12. 12. Yeo, C.I., Ooi, K.K. & Tiekink, E.R.T. (2018). Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy? Molecules, 23, 1410; DOI: 10.3390/molecules23061410.10.3390/23061410
  13. 13. Jumaa, T., Chasib, M., Hamid, M.K. & Al-Haddad, R. (2014). Effect of the Electric Field on the Antibacterial Activity of Au Nanoparticles on Some Gram-positive and Gram-negative Bacteria. Nanosci. Nanotech. Res., 2(1),1–7; DOI: 10.12691/nnr-2-1-1.
  14. 14. Amin, R.R. (2010). Chemical and Electrochemical Preparation for Co(II) Complexes of Some Novel Pyridine-2-(1H)-Thione Ring Fused Cycloalkane Derivatives; Phosphorus, Sulfur, and Silicon and the Related Elements 185(3), 537–543.10.1080/10426500902840861
  15. 15. Amin, R.R. & Elgemeie, G.E.H. (2001). The direct electrochemical synthesis of Co(II), Ni(II), AND Cu(II) complexes of some pyridinethione derivatives; Synth. React. Inorg. Met.-Org. Chem., 31(3), 431–440.10.1081/SIM-100002230
  16. 16. Reiss, A., Florea, S. & Rudorf, W.D. (2000). Transition metal complexes of heterocyclic ligands. Part III. Complexes of 6-aryl-3-cyano-4-trifluormethyl-pyridine-2(1H)-thione with Co(II), Ni(II), Cu(II) and Zn(II). Polish J. Chem. 74, 589–594.
  17. 17. Rodinovskaya, L.A, Sharanin, Yu.A., Litvinov, V.P., Shestopalov, A.M., Promonenkov, V.K., Zolotarev, V.K., Mortikov, V.Yu., (1985). Nitrile cyclization reactions. 8. Synthesis and transformation of 6-aryl-4-trifluoromethyl-3-cyano-2 (1H)-pyridinethiones. Zh. Org. Khim., 21 2439.10.1002/chin.198611101
  18. 18. Reeves, D.S. & White, L.O. (1983) Principles of methods of Assaying Antibiotics in Pharmaceutical Microbiology, 3rd ed., Blackwell Scientific Publication, p. 140–162.
  19. 19. Winter, C.A., Risley, E.A., Nuss, G.W. (1962). Carrageenin-Induced Edema in Hind Paw of the Rat as an Assay for Antiinflammatory Drugs. Proc. Soc. Exp. Biol. Med. 111, 544–547. https://doi.org/10.3181/00379727-111-27849.10.3181/00379727-111-2784914001233
Language: English
Page range: 20 - 25
Published on: Dec 31, 2019
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Osama I. El-Sabbagh, Yamany B. Yamany, Hany A. Eldeab, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.