Have a personal or library account? Click to login
Adsorption mechanism and modelling of hydrocarbon contaminants onto rice straw activated carbons Cover

Adsorption mechanism and modelling of hydrocarbon contaminants onto rice straw activated carbons

Open Access
|Dec 2019

References

  1. 1. Serrano, R., Portolés, T., Blanes, M.A., Hernández, F., Navarro, J.C., Varó, I. & Amat, F. (2012). Characterization of the organic contamination pattern of a hyper-saline ecosystem by rapid screening using gas chromatography coupled to high-resolution time-of-flight mass spectrometry, Sci. Total Environ. 433, 161–168. DOI: 10.1016/j.scitotenv.2012.06.042.10.1016/j.scitotenv.2012.06.042
  2. 2. Moreno-González, R., Campillo, J.A., García, V. & León, V.M. (2013). Seasonal input of regulated and emerging organic pollutants through surface watercourses to a Mediterranean coastal lagoon. Chemosphere 92, 247–257. DOI: 10.1016/j.chemosphere.2012.12.022.10.1016/j.chemosphere.2012.12.022
  3. 3. Orton, F., Lutz, I., Kloas, W. & Routledge, E.J. (2009). Endocrine disrupting effects of herbicides and pentachlorophenol: in vitro and in vivo evidence, Sci. Total Environ. 43(6), 2144–2150. DOI: 10.1021/es8028928.10.1021/es8028928
  4. 4. Han, D., Jia, W. & Liang, H. (2010). Selective removal of 2,4-dichlorophenoxyacetic acid from water by molecularly-imprinted amino-functionalized silica gel sorbent, J. Environ. Sci. 22(2), 237–241. DOI: 10.1016/S1001-0742(09)60099-1.10.1016/S1001-0742(09)60099-1
  5. 5. Aksu, Z. & Kabasakal, E. (2004) Batch adsorption of 2,4-Dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon, Sep. Purif. Technol. 35, 223–240. DOI: 10.1016/S1383-5866(03)00144-8.10.1016/S1383-5866(03)00144-8
  6. 6. Peixoto, F.P., Lopes, M.L., Madeira, V.M.C. & Vicente, J.A.F. (2009). Toxicity of MCPA on non-green potato tuber calli, Acta Physiol. Plant. 31, 103–109. DOI 10.1007/s11738-008-0207-x.10.1007/s11738-008-0207-x
  7. 7. Cerbai, B., Solaro, R. & Chiellini, E. (2008). Synthesis and characterization of functionalpolyesters tailored for biomedical applications. J. Polym. Sci. A1. 46, 2459–2476. DOI: 10.1002/pola.22579.10.1002/pola.22579
  8. 8. Zhang, R. & Moore, J.A. (2003). Synthesis, characterization and properties of polycarbonate containing carboxyl side groups, Macromol. Symp. 199, 375–390. DOI: 10.1002/masy.200350932.10.1002/masy.200350932
  9. 9. Gültekin, I. & Ince, N.H. (2007). Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes, J. Environ. Manage 85, 816–832. DOI: 10.1016/j.jenvman.2007.07.020.10.1016/j.jenvman.2007.07.02017768001
  10. 10. Laganà, A., Bacaloni, A., De Leva, I., Faberi, A., Fago, G. & Marino, A. (2004). Analytical methodologies for determining the occurence of endocrine disrupting chemicals in sewage treatment plants and natural waters, Anal. Chim. Acta 501, 79–88. DOI: 10.1016/j.aca.2003.09.020.10.1016/j.aca.2003.09.020
  11. 11. Mailler, R., Gasperi, J., Coquet, Y., Derome, C., Buleté, A., Vulliet, E., Bressy, A., Varrault, G., Chebbo, G. & Rocher, V. (2016). Removal of emerging micropollutants from waste-water by activated carbon adsorption: Experimental study of different activated carbons and factors influencing the adsorption of micropollutants in wastewater, J. Environ. Chem. Eng. 4, 1102–1109. DOI: 10.1016/j.jece.2016.01.018.10.1016/j.jece.2016.01.018
  12. 12. Ocampo-Pérez, R., Abdel daiem, M.M., Rivera-Utrilla, J., Méndez-Díaz, J.D. & Sánchez-Polo M. (2012). Modeling adsorption rate of organic micropollutants present in landfill leachates onto granular activated carbon, J. Colloid Interf. Sci. 385, 174–182. DOI: 10.1016/j.jcis.2012.07.004.10.1016/j.jcis.2012.07.004
  13. 13. Abdel daiem, M.M., Rivera-Utrilla, J., Ocampo-Pérez, R., Sánchez-Polo, M. & López-Peñalver, J.J. (2013). Treatment of water contaminated with diphenolic acid by gamma radiation in the presence of different compounds, Chem. Eng. J. 219, 371–379. DOI: 10.1016/j.cej.2012.12.069.10.1016/j.cej.2012.12.069
  14. 14. Rivera-Utrilla, J., Sánchez-Polo, M., Abdel daiem, M.M. & Ocampo-Pérez, R. (2012). Role of activated carbon in the photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid by the UV/TiO2/activated carbon system, Appl. Catalysis–B: Environ. 126, 100–107. DOI: 10.1016/j.apcatb.2012.07.015.10.1016/j.apcatb.2012.07.015
  15. 15. Tchaikovskaya, O.N., Karetnikova, E.A., Sokolova, I.V., Mayer, G.V. & Shvornev, D.A. (2012). The phototransformation of 4-chloro-2-methylphenoxyacetic acid under KrCl and XeBr excilamps irradiation in water. J. Photoch. Photobio. A 228, 8–14. DOI: 10.1016/j.jphotochem.2011.11.004.10.1016/j.jphotochem.2011.11.004
  16. 16. Rivera-Utrilla, J., Sánchez-Polo, M., Gómez-Serrano, V., Álvarez, P.M., Alvim-Ferraz, M.C.M. & Dias, J.M. (2011). Activated carbon modifications to enhance its water treatment applications. An overview. J. Hazard. Mater. 187, 1–23. DOI: 10.1016/j.jhazmat.2011.01.033.10.1016/j.jhazmat.2011.01.033
  17. 17. Daifullah, A.A.M., Yakout, S.M. & Elreefy, S.A. (2007). Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw, J. Hazard. Mater. 147, 633–643. DOI: 10.1016/j.jhazmat.2007.01.062.10.1016/j.jhazmat.2007.01.062
  18. 18. Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J. & Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J. Environ. Manage. 85 (2007) 833–84610.1016/j.jenvman.2007.07.031
  19. 19. Hameed, B.H., Salman, J.M. & Ahmad, A.L. (2009). Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones, J. Hazard. Mater. 163, 121–126. DOI: 10.1016/j.jhazmat.2008.06.069.10.1016/j.jhazmat.2008.06.069
  20. 20. Said, N., El-Shatoury, S.A., Díaz, L.F. & Zamorano, M. (2013). Quantitative appraisal of biomass resources and their energy potential in Egypt, Renew. Sust. Energ. Rev. 24, 84–91. DOI: 10.1016/j.rser.2013.03.014.10.1016/j.rser.2013.03.014
  21. 21. Ahmedna, M., Marshall, W.E. & Rao, R.M. (2000). Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties, Bioresour. Technol. 71, 113–123. DOI: 10.1016/S0960-8524(99)00070-X.10.1016/S0960-8524(99)00070-X
  22. 22. Said, N., Bishara, T., García-Maraver, A. & Zamorano, M. (2013). Effect of water washing on the thermal behavior of rice straw, Waste Manage. 33, 2250–256. DOI: 10.1016/j.wasman.2013.07.019.10.1016/j.wasman.2013.07.019
  23. 23. Bautista-Toledo, M.I, Méndez-Díaz, J.D., Sánchez-Polo, M., Rivera-Utrilla, J. & Ferro-García, M.A. (2008). Adsorption of sodium dodecylbenzenesulfonate on activated carbons: Effects of solution chemistry and presence of bacteria, J. Colloid Interf. Sci. 317, 11–17. DOI: 10.1016/j.jcis.2007.09.039.10.1016/j.jcis.2007.09.039
  24. 24. Rivera-Utrilla, J. & Sánchez-Polo, M. (2004). Ozonation of naphthalenesulphonic acid in the aqueous phase in the presence of basic activated carbons, Langmuir 20, 9217–9222. DOI: 10.1021/la048723+.10.1021/la048723+
  25. 25. Rivera-Utrilla, J., Bautista-Toledo, I., Ferro-García, M.A. & Moreno-Castilla, C. (2003). Bioadsorption of Pb (II), Cd (II), and Cr (VI) on activated carbon from aqueous solutions, Carbon 41, 323–330. DOI: 10.1016/S0008-6223(02)00293-2.10.1016/S0008-6223(02)00293-2
  26. 26. Leyva-Ramos, R. & Geankoplis, C.J. (1985). Model simulation and analysis of surface diffusion of liquid in porous solids, Chem. Eng. Sci. 40(5), 799–807. DOI: 10.1016/0009-2509(85)85032-6.10.1016/0009-2509(85)85032-6
  27. 27. Leyva-Ramos, R. & Geankoplis, C.J. (1994). Diffusion in liquid filled pores of activated carbon, I: pore volumen diffusion, Can. J. Chem. Eng. 72(2), 262–271. DOI: 10.1002/cjce.5450720213.10.1002/cjce.5450720213
  28. 28. Choong, T.S.Y., Wong, T.N., Chuah, T.G. & Idris, A. (2006). Film-pore-concentration-dependent surface diffusion model for the adsorption of dye onto palm kernel shell activated carbon. J. Colloid Interf. Sci. 301(2), 436–440. DOI: 10.1016/j.jcis.2006.05.033.10.1016/j.jcis.2006.05.03316814316
  29. 29. Schiesser, W.E. & Silebi, C.A. (1997). Computational Transport Phenomena. Numerical Methods for the solution of Transport Problems 1995–1997: Cambridge University Press: Cambridge, U.K.10.1017/9780511804144
  30. 30. Méndez-Díaz, J.D., Abdel daiem, M.M., Rivera-Utrilla, J., Sánchez-Polo, M. & Bautista-Toledo, I. (2012). Adsorption/bioadsorption of phthalic acid, an organic micropollutant present in landfill leachates, on activated carbons, J. Colloid Interf. Sci. 369, 358–365. DOI: 10.1016/j.jcis.2011.11.073.10.1016/j.jcis.2011.11.07322197057
  31. 31. Rivera-Utrilla, J., Prados-Joya, G., Sánchez-Polo, M., Ferro-García, M.A. & Bautista-Toledo, I. (2009). Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon, J. Hazard. Mater. 170, 298–305. DOI: 10.1016/j.jhazmat.2009.04.096.10.1016/j.jhazmat.2009.04.09619464791
  32. 32. De Lange, M.F., Vlugt, T.J.H., Gascon, J. & Kapteijn, F. (2014). Adsorptive characterization of porous solids: Error analysis guides the way, Micropor Mesopor Mat. 200, 199–215, DOI: 10.1016/j.micromeso.2014.08.048.10.1016/j.micromeso.2014.08.048
  33. 33. Kalderis, D., Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E., Valle, J.O.D. & Fernández-Pereira, C. (2008). Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chem. Eng. J. 144, 42–50. DOI: 10.1016/j.cej.2008.01.007.10.1016/j.cej.2008.01.007
  34. 34. Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F. & Moreno-Castilla, C. (2012). Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes, Bioresour. Technol. 111, 185–190. DOI: 10.1016/j.biortech.2012.02.010.10.1016/j.biortech.2012.02.010
  35. 35. Giles, C.H., Smith, D. & Huitson, A. (1974). A General treatment and classification of the solute adsorption isotherm I. Theoretical, J. Colloid Interf. Sci. 47, 755–765. DOI: 10.1016/0021-9797(74)90252-5.10.1016/0021-9797(74)90252-5
  36. 36. Giles, C.H., D’Silva, A.P. & Easton, I.A. (1974). A general treatment and classification of the solute adsorption isotherm Part II. Experimental Interpretation, J. Colloid Interf. Sci. 47, 766–778. DOI: 0.1016/0021-9797(74)90253-7.10.1016/0021-9797(74)90253-7
  37. 37. Noll, K.E., Gounaris, V. & Hou, W.S. (1992). Adsorption Technology for Air and Water Pollution Control (1st ed.). Michigan, USA: Lewis Publishers
  38. 38. Poling, B.E., Prausnitz, J.M. & O’Connell, J.P. (2001). The Properties of Gases and Liquids (5th ed.) New York, USA: McGraw-Hill Companies.
  39. 39. Furusawa, Y. & Smith, J.M. (1973). Fluid-Particle and Intraparticle Mass Transport Rates in Slurries. Ind. Eng. Chem. Fundamen. 12 (2), 197–203. DOI: 10.1021/i160046a009.10.1021/i160046a009
  40. 40. Ruthven, D.M. (1984). Principles of adsorption and adsorption processes; New Brunswick University: Fredericton, Canada.
  41. 41. Do, D.D. (1998). Adsorption analysis: Eguilibria and kinetics; Queensland University Press: Queensland, Australia.
  42. 42. Suzuki, M. (1990). Adsorption Engineering; Tokyo University Press: Tokyo, Japan.
  43. 43. Leyva-Ramos, R., Rivera-Utrilla, J., Medellín-Castillo, N.A. & Sánchez-Polo, M. (2009). Kinetic modelling of naphthalenesulphonic acid adsorption from aqueous solution onto untreated and ozonated activated carbons, Adsorpt. Sci. Technol. 27 (4), 395–411. DOI: 10.1260/026361709790252650.10.1260/026361709790252650
  44. 44. López-Ramón, V., Moreno-Castilla, C., Rivera-Utrilla, J. & Radovic, L.R. (2003). Ionic strength effects in aqueous phase adsorption of metal ions on activated carbons, Carbon 41, 2020–2022. DOI: 0.1016/S0008-6223(03)00184-2.10.1016/S0008-6223(03)00184-2
  45. 45. Barton, S.S., Evans, M.J.B. & MacDonald, J.A.F. (1994). Adsorption of water vapor on nonporous carbon. Langmuir 10, 4250–4252. DOI: 10.1021/la00023a055.10.1021/la00023a055
Language: English
Page range: 1 - 12
Published on: Dec 31, 2019
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Mahmoud M. Abdel daiem, Manuel Sánchez-Polo, Ahmed S. Rashed, Nehal Kamal, Noha Said, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.