Have a personal or library account? Click to login
Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) Schiff base complexes of 3-hydroxy-4-[N-(2-hydroxynaphthylidene)-amino]-naphthalene-1-sulfonic acid: Synthesis, Spectroscopic, thermal, and antimicrobial studies Cover

Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) Schiff base complexes of 3-hydroxy-4-[N-(2-hydroxynaphthylidene)-amino]-naphthalene-1-sulfonic acid: Synthesis, Spectroscopic, thermal, and antimicrobial studies

Open Access
|Sep 2019

References

  1. 1. Al Zoubi, W. & Al Mohanna, N. (2014). Membrane sensors based on Schiff bases as chelating ionophores–A review. Spectrochim. Acta, Part A, 132, 854–870. doi.org/10.1016/j.saa.2014.04.176.10.1016/j.saa.2014.04.17624947440
  2. 2. Al Zoubi, W., Al-Hamdani, A.A.S. & Kaseem, M. (2016). Synthesis and antioxidant activities of Schiff bases and their complexes: a review. Appl. Organomet. Chem., 30, 810–817. doi.org/10.1002/aoc.3506.10.1002/aoc.3506
  3. 3. Al Zoubi, W. & Ko, Y.G. (2017). Schiff base complexes and their versatile applications as catalysts in oxidation of organic compounds: part I. Appl. Organom. Chem., 31, e3574.10.1002/aoc.3574
  4. 4. Al-Hamdani, A.A.S., Balkhi, A.M., Falah, A. & Shaker, S.A. (2016). Synthesis and investigation of thermal properties of vanadyl complexes with azo-containing Schiff-base dyes. J. Saudi, Chem. Soc., 20, 487–501.10.1016/j.jscs.2012.08.001
  5. 5. Duffy, K.J., Darcy, M.G., Delorme, E., Dillon, S.B., Eppley, D.F., Erickson-Miller, C., Giampa, L., Hopson, C.B., Huang, Y., Keenan, R.M., Lamb, P., Leong, L., Liu, N., Miller, S.G., Price, A.T., Rosen, J., Shah, R., Shaw, T.N., Smith, H., Stark, K.C., Tian, S.-S., Tyree, C., Wig-gall, K.J., Zhang, L. & Luengo, J.I. (2001). Hydrazinonaphthalene and azonaphthalene thrombopoietin mimics are nonpeptidyl promoters of megakaryocytopoiesis. J. Med. Chem., 44(22), 3730–3745.10.1021/jm010283l11606138
  6. 6. Shweta, Neeraj, Asthana, S.K., Mishra, R.K. & Upadhyay, K.K. (2016). Design-specific mechanistic regulation of the sensing phenomena of two Schiff bases towards Al3. RSC Adv., 6, 55430–55437.10.1039/C6RA01385F
  7. 7. Bose, D., Banerjee, J., Rahaman, S.K.H., Mostafa, G., Fun, H.K., Bailey, W.R.D., Zaworotko, M.J. & Ghosh, B.K. (2004). Polymeric end-to-end bibridged cadmium(II)thiocyanates containing monodentate and bidentate N-donor organic blockers: supramolecular synthons based on π–π and/or C–H..π interactions. Polyhedron, 23, 2045–2053.10.1016/j.poly.2004.04.035
  8. 8. El-Boraey, H.A. (2005). Structural and thermal studies of some aroylhydrazone Schiff’s bases-transition metal complexes. J. Therm. Anal. Calorim., 81(2), 339–346.10.1007/s10973-005-0789-0
  9. 9. Al-Shirif, A.S.M. & Abdel-Fattah, H.M. (2003). Thermogravimetric and spectroscopic characterization of trivalent lanthanide chelates with some Schiff bases. J. Therm. Anal. Calorim., 71, 643–649.10.1023/A:1022880615841
  10. 10. Grivani, G., Bruno, G., Amiri Rudbari, H. & Khalaji, A.D. (2012). Synthesis, characterization and crystal structure determination of a new oxovanadium (IV) Schiff base complex: the catalytic activity in the epoxidation of cyclooctene. Inorg. Chem. Commun., 18, 15–20.10.1016/j.inoche.2011.12.044
  11. 11. Khalaji, A.D., Fejfarova, K. & Dusek, M. (2010). Synthesis and Characterization of Two Diimine Schiff Bases Derived from 2,4-Dimethoxybenzaldehyde: The Crystal Structure of N,N’-Bis(2,4 dimethoxybenzylidene)-1,2-diaminoethane. Acta Chim. Slov., 57, 257–261.
  12. 12. Khalaji, A.D., NajafiChermahini, A., Fejfarova, K. & Dusek, M. (2010). Synthesis, characterization, crystal structure, and theoretical studies on Schiff-base compound 6-[(5-Bromopyridin-2-yl) iminomethyl] phenol. Struct. Chem., 21(1), 153–157.10.1007/s11224-009-9554-5
  13. 13. Khandar, A.A. & Rezvani, Z. (1999). Preparation and thermal properties of the bis [5-((4-heptyloxyphenyl) azo)-N-(4-alkoxyphenyl)-salicylaldiminato] copper (II) complex homologues. Polyhedron, 18, 129.10.1016/S0277-5387(98)00275-7
  14. 14. El-Deen, I.M., Belal, A.A.M., Farid, N.Y., Zakaria, R. & Refat, M.S. (2015). Synthesis, spectroscopic, coordination and biological activities of some transition metal complexes containing ONO tridentate Schiff base ligand. Spectrochimica Acta Part A, 149, 771–787.10.1016/j.saa.2015.05.005
  15. 15. Bauer, A.W., Kirby, W.M.M., Sherris, J.C. & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 36, 493–496.10.1093/ajcp/45.4_ts.493
  16. 16. Geary, W. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. J. Coord. Chem. Rev., 7, 81–122.10.1016/S0010-8545(00)80009-0
  17. 17. Kavitha, P. & Reddy, K.L. (2016). Synthesis, spectral characterisation, morphology, biological activity and DNA cleavage studies of metal complexes with chromone Schiff base. Arabian J. Chem., 9, 596–605.10.1016/j.arabjc.2012.09.001
  18. 18. Bellamy, L.J. (1980). The Infrared Spectra of Complex Molecules, Chapman and Hall, London.10.1007/978-94-011-6520-4
  19. 19. Hanai, K. & Maki, Y. (1993). Vibrational spectra of β-lactams—III. potassium 2-azetidinone-1-sulfonate and its isotopic compounds. Spectrochim Acta A, 49, 1131–1137.10.1016/0584-8539(93)80072-I
  20. 20. Wojciechowski, K. & Jerzy, S. (2000). Effect of the sulphonic group position on the properties of monoazo dyes. Dyes and Pigments, 44, 137–147.10.1016/S0143-7208(99)00085-6
  21. 21. Socrates, G. (1980). Infrared Characteristic Group Frequencies. John Wiley and Sons, New York.
  22. 22. Snehalatha, M., Ravikumar, C., Sekar, N., Jayakumar, V.S., & Joe, I.H. (2008). F.T-Raman, IR and UV-visible spectral investigations and ab initio computations of a nonlinear food dye amaranth. J. Raman Spectrosc., 39, 928–936.10.1002/jrs.1938
  23. 23. Socrates, G. (2001). Infrared and Raman Characteristic Group Frequencies. John Wiley and Sons, Chichester.
  24. 24. Lever, A.B.P. (1997). Inorganic Electronic Spectroscopy. 2nd ed., Elsevier, Amsterdam.
  25. 25. Wang, H., Zhao, P., Shao, D., Zhang, J. & Zhu, Y. (2009). Synthesis, characterization and spectra studies on Zn (II) and Cu (II) complexes with thiocarbamide ligand containing Schiff base group. Struct. Chem., 20, 995–1003.10.1007/s11224-009-9502-4
  26. 26. Raman, N., Ravichandran, S. & Thangarajan, C. (2004). Copper (II), cobalt (II), nickel (II) and zinc (II) complexes of Schiff base derived from benzil-2, 4-dinitrophenylhydrazone with aniline. J. Chem. Sci., 116, 215–219.10.1007/BF02708270
  27. 27. Lever, A.B.P. (1968). Electronic spectra of some transition metal complexes: Derivation of Dq and B. J. Chem. Edu., 45, 711.10.1021/ed045p711
  28. 28. Ramam, N., Kulandaisami, A. & Shunmugasundaram, A. (2001). Synthesis, spectral, redox and antimicrobial activities of Schiff base complexes derived from 1-phenyl-2, 3-dimethyl-4-aminopyrazol-5-one and acetoacetanilide. Trans. Met. Chem., 26, 131135.
  29. 29. Sankhala, D.S., Mathur, R.C. & Mishra, S.N. (1980). Synthesis, magnetic and spectral studies on some adducts of manganese (II) acetylacetonate. Indian J. Chem., 19A, 75–82.
  30. 30. Hathaway, B.J. & Billing, D.E. (1970). The electronic properties and stereochemistry of mono-nuclear complexes of the copper (II) ion. Coord. Chem. Rev., 5, 143–207.10.1016/S0010-8545(00)80135-6
  31. 31. Hathaway, B.J. (1984). A new look at the stereochemistry and electronic properties of complexes of the copper (II) ion. Struct. Bonding (Berlin), 57, 55.10.1007/BFb0111454
  32. 32. Coats, A.W. & Redfern, J. P. (1964). Kinetic parameters from thermogravimetric data. Nature, 201, 68–69.10.1038/201068a0
  33. 33. Horowitz, H.W. & Metzger, G.A. (1963). A new analysis of thermogravimetric traces. Anal. Chem., 35, 1464–1468.10.1021/ac60203a013
  34. 34. Chourasia, P., Suryesh, K.K. & Mishra, A.P. (1993). Synthesis and structural investigation of some mixed-ligand selenito complexes of cobalt (II). Proc. Ind. Acad. Sci., 105, 173–181.10.1007/BF02877480
  35. 35. Frost, A.A. & Pearson, R.G. (1961). Kinetics and Mechanism, New York; Wiley.10.1021/j100820a601
  36. 36. Raman, N., Raja, S.J. & Sakthivel, A. (2009). Transition metal complexes with Schiff-base ligands: 4-aminoantipyrine based derivatives–a review. J. Coord. Chem., 62, 691–709.10.1080/00958970802326179
  37. 37. Kulkarni, A.D., Bagihalli, G.B., Patil, S.A. & Badami, P.S. (2009). Synthesis, characterization, electrochemical and in-vitro antimicrobial studies of Co(II), Ni(II), and Cu(II) complexes with Schiff bases of formyl coumarin derivatives. J. Coord. Chem., 62, 3060–3072.10.1080/00958970902914569
  38. 38. Li, F., Feterl, M., Mulayana, Y., Warner, J.M., Collins, J.G. & Keene, F.R. (2012). In vitro susceptibility and cellular uptake for a new class of antimicrobial agents: dinuclear ruthenium(II) complexes. J. Antimicrob. Chemother., 67, 2686–2695.10.1093/jac/dks29122865383
Language: English
Page range: 26 - 34
Published on: Sep 26, 2019
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Safyah B. Bakare, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.