Have a personal or library account? Click to login
Effects of the type of biomass and ashing temperature on the properties of solid fuel ashes Cover

Effects of the type of biomass and ashing temperature on the properties of solid fuel ashes

Open Access
|Jun 2019

References

  1. 1. Romero, E., Quirantes, M. & Nogales, R. (2017). Characterization of biomass ashes produced at different temperatures from olive-oil-industry and greenhouse vegetable wastes. Fuel. 208, 1–9. DOI: doi.org/10.1016/j.fuel.2017.06.133.10.1016/j.fuel.2017.06.133
  2. 2. Niu, Y., Tan, H., Wang, X., Liu, Z., Liu, H., Liu, Y. & Xu, T. (2010). Study on fusion characteristics of biomass ash. Bioresource Technol. 101 (23), 9373–9381. DOI: doi.org/10.1016/j.biortech.2010.06.144.10.1016/j.biortech.2010.06.14420655203
  3. 3. Fang, X., Jia, L., Wang, F. & Yu, G. (2012). Experimental study on ash fusion characteristics of biomass. Bio-resource Technol. 104(1), 769–774. DOI: doi.org/10.1016/j.biortech.2011.11.055.10.1016/j.biortech.2011.11.05522154746
  4. 4. Xiao, R., Xueli, C., Fuchen, W. & Guangsuo, Y. (2011). The physicochemical properties of different biomass ashes at different ashing temperature. Renew. Energ. 36(1), 244–249. DOI: doi.org/10.1016/j.renene.2010.06.027.10.1016/j.renene.2010.06.027
  5. 5. Malaťák, J. & Vaculík, P. (2008). Biomasa pro výrobu energie. Praha, Česká zemědělská univerzita v Praze. ISBN 978-80-213-1810-6.
  6. 6. Holubcik, M. & Jandacka, J. (2014). Mathematical model for prediction of biomass ash melting temperature using additives. Komunikacie. 16 (3A), 48–53. ISSN:1335-4205.10.26552/com.C.2014.3A.48-53
  7. 7. Garcia-Maraver, A., Mata-Sanchez, J., Carpio, M. & Perez-Jimenez, J.A. (2017). Critical review of predictive coefficients for biomass ash deposition tendency. J. Energy Inst. 90, 214–228. DOI: doi.org/10.1016/j.joei.2016.02.002.10.1016/j.joei.2016.02.002
  8. 8. Vamvuka, D. & Kakaras, E. (2011). Ash properties and environmental impact of various biomass and coal fuels and their blends. Fuel Process Technol. 92, 570–581. DOI: doi.org/10.1016/j.fuproc.2010.11.013.10.1016/j.fuproc.2010.11.013
  9. 9. Pronobis, M., Kalisz, S. & Polok, M. (2013). The impact of coal characteristics on the fouling of stoker-fired boiler convection surfaces. Fuel. 112, 473–482. DOI: doi.org/10.1016/j.fuel.2013.05.044.10.1016/j.fuel.2013.05.044
  10. 10. Yao, X., Xu, K., Yan, F. & Yu, L. (2017). The influence of ashing temperature on ash fouling and slagging characteristics during combustion of biomass fuels. Bioresources. 12(1), 1593–1610.10.15376/biores.12.1.1593-1610
  11. 11. Du, S., Yang, H., Qian, K., Wang, X. & Chen, H. (2014). Fusion and transformation properties of the inorganic components in biomass ashes. Fuel. 117, 1281–1287. DOI: doi.org/10.1016/j.fuel.2013.07.085.10.1016/j.fuel.2013.07.085
  12. 12. Fernandes, I.J., Calheiro, D., Kieling, A.G., Moraes, C.A-.M., Rocha, T.L.A.C., Brehm, F.A. & Modolo, R.C.E. (2016). Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel. 165, 351–359. DOI: doi.org/10.1016/j.fuel.2015.10.086.10.1016/j.fuel.2015.10.086
  13. 13. Li, W., Li, Q., Zhang, Y. & Meng, A. (2012). Ashing temperaturés impact on the characteristics of biomass ash. Appl. Mech. Mater. 260–261, 217–223. DOI: doi.org/10.4028/www.scientific.net/AMM.260-261.217.10.4028/www.scientific.net/AMM.260-261.217
  14. 14. Yao, X., Xu, K. & Li, Y. (2017). Experimental investigation of performance properties and agglomeration behavior of fly ash from gasification of corncobs. J. Cent. South. Univ. 24, 496–505. DOI: doi.org/10.1007/s11771-017-3452-6.10.1007/s11771-017-3452-6
  15. 15. Yao, X., Xu, K. & Yan, F. (2016). Comparative study of characterization and utilization of corncob ashes from gasification process and combustion process. Constr. Build. Mater. 119, 215–222. DOI: doi.org/10.1016/j.conbuildmat.2016.04.077.10.1016/j.conbuildmat.2016.04.077
  16. 16. Rizvi, T., Xing, P., Pourkashanian, M., Darvell, L.I., Jones, J.M. & Nimmo, W. (2015). Prediction of biomass ash fusion behaviour by the use of detailed characterisation methods coupled with thermodynamic analysis. Fuel. 141, 275–284. DOI: doi.org/10.1016/j.fuel.2014.10.021.10.1016/j.fuel.2014.10.021
  17. 17. Suárez-García, F., Martínez-Alonso, A., Llorente, F.M. & Tascón, J.M.D. (2002). Inorganic matter characterization in vegetable biomass feedstocks. Fuel. 81, 1161–1169. DOI: doi.org/10.1016/S0016-2361(02)00026-1.10.1016/S0016-2361(02)00026-1
  18. 18. International Organization for Standardization. (2016). Solid biofuels – Determination of ash content. ISO 18122:2015.
  19. 19. International Organization for Standardization. (2010). Solid mineral fuels – Determination of ash. ISO 1171:2010.
  20. 20. Česká technická norma (2013). Method of testing cement – Part 2: Chemical analysis of cement. ČSN EN 196-2:2013.
  21. 21. žProg. Energy Combust. Sci. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. 52, 1–61. DOI: doi.org/10.1016/j.pecs.2015.09.003.10.1016/j.pecs.2015.09.003
  22. 22. International Organization for Standardization. (2008). Hard coal and coke – Determination of ash fusibility. ISO 540:2008.
  23. 23. European Committee for Standardization. (2007). Solid biofuels – Method for the determination of ash melting behavior – Part 1: Characteristic temperatures method. CEN/TS 15370-1.
  24. 24. Vassilev, S.V., Vassileva, C.G., Song, Y.C., Li, W.Y. & Feng, J. (2017). Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel. 208, 377–409. DOI: doi.org/10.1016/j.fuel.2017.07.036.10.1016/j.fuel.2017.07.036
  25. 25. Liu, B., He, Q., Jiang, Z., Xu, R. & Hu, B. (2013). Relationship between coal ash composition and ash fusion temperatures. Fuel. 105, 293–300. DOI: doi.org/10.1016/j.fuel.2012.06.046.10.1016/j.fuel.2012.06.046
  26. 26. Magdziarz, A., Dalai, A.K. & Kozinski, J.A. (2016). Chemical composition, character and reactivity of renewable fuel ashes. Fuel. 176, 135–145. DOI: doi.org/10.1016/j.fuel.2016.02.069.10.1016/j.fuel.2016.02.069
  27. 27. Reinmoller, M., Schreiner, M., Guhl, S., Neuroth, M. & Meyer, B. (2017). Formation and transformation of mineral phases in various fuels studied by different ashing methods. Fuel. 202, 641–649.10.1016/j.fuel.2017.04.115
Language: English
Page range: 43 - 51
Published on: Jun 28, 2019
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Jiří Horák, Lenka Kuboňová, Milan Dej, Vendula Laciok, Šárka Tomšejová, František Hopan, Kamil Krpec, Jan Koloničný, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.