Have a personal or library account? Click to login
Silver nanoparticles deposited on calcium hydrogenphosphate – silver phosphate matrix; biological activity of the composite Cover

Silver nanoparticles deposited on calcium hydrogenphosphate – silver phosphate matrix; biological activity of the composite

Open Access
|Jun 2019

References

  1. 1. Li, W.R., Xie, X.B., Shi, Q.S., Zeng, H.Y., Ou-Yang, Y.S. & Chen, Y.B. (2010).Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85, 1115–1122. DOI: 10.1007/s00253-009-2159-5.10.1007/s00253-009-2159-5
  2. 2. Lubick, N. (2008). Nanosilver toxicity: ions, nanoparticles—or both? Environ. Sci. Technol. 42, 8617–8617. DOI: 10.1021/es8026314.10.1021/es8026314
  3. 3. Leung, B.O., Jalilehvand, F., Mah, V., Parvez, M. & Wu, Q. (2013). Silver(I) Complex Formation with Cysteine, Penicillamine, and Glutathione. Inorg. Chem. 52, 4593–4602. DOI: 10.1021/ic400192c.10.1021/ic400192c
  4. 4. Aoki, K. & Saenger, W. (1983). Interactions of Biotin with Metal Ions. X-Ray Crystal Structure of the Polymeric Biotin-Silver(I) Nitrate Complex: Metal Bonding to Thioether and Ureido Carbonyl Groups. J. Inorg. Biochem. 19, 269–273. DOI: 10.1016/0162-0134(83)85031-4.10.1016/0162-0134(83)85031-4
  5. 5. Panzner, M.J., Bilinovich, S.M., Youngs, W.J. & Leeper, T.C. (2011). Silver metallation of hen egg white lysozyme: X-ray crystal structure and NMR studies. Chem. Commun. 47, 12479–12481. DOI: 10.1039/c1cc15908a.10.1039/c1cc15908a367718822042312
  6. 6. Highly dispersed AgNPs (10 nm diameter sized) are available in isopropyl alcohol, aqueous buffered solutions with sodium citrate stabilizer, or in polyvinylpyrrolidone (PVP) coat from worldwide chemicals distributors.
  7. 7. Abou El-Nour, K.M.M., Eftaiha, A., Al-Warthan, A., Ammar, R.A.A. (2010). Synthesis and applications of silver nanoparticles. Arab. J. Chem. 3, 135–140. DOI: 10.1016/j.arabjc.2010.04.008.10.1016/j.arabjc.2010.04.008
  8. 8. Mulfinger, L., Solomon, S.D., Bahadory, M., Jeyarajasingam, A.V., Rutkowsky, S.A., Boritz, C. (2007). Synthesis and Study of Silver Nanoparticles. J. Chem. Educ. 84, 322–325. DOI: 10.1021/ed084p322.10.1021/ed084p322
  9. 9. Liz-Marźan, L. & Lado-Touriňo, I. (1996) Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir. 12, 35853–3589. DOI: 10.1021/la951501e.10.1021/la951501e
  10. 10. Radziuk, D., Skirtach, A., Sukhorukov, G., Shchukin, D. & Mohwald, H. (2007).Stabilization of silver nanoparticles by polyelectrolytes and poly(ethylene glycol). Macromol. Rapid Commun. 28, 848–855. DOI: 10.1002/marc.200600895.10.1002/marc.200600895
  11. 11. Malina, D., Sobczak-Kupiec, A., Wzorek, Z. & Kowalski, Z. (2012). Silver nanoparticles with different concentrations of polyvinylpyrrolidone. Dig. J. Nanomat. Biostruct.7, 1527–1534.10.1049/mnl.2012.0415
  12. 12. Huang, H. & Yang, X. (2004). Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr. Res. 339, 2627–2631. DOI: 10.1016/j.carres.2004.08.005.10.1016/j.carres.2004.08.00515476726
  13. 13. Shin, H.S., Yang, H.J., Kim, S.B. & Lee, M.S. (2004). Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution. J. Colloid Interface Sci. 274, 89–94. DOI: 10.1016/j.jcis.2004.02.08410.1016/j.jcis.2004.02.084
  14. 14. Hu, Y., Zhao, T., Zhu, P., Liang, X., Sun, R. & Wong, P.C. (2016). Tailoring size and coverage density of silver nanoparticles on monodispersed polymer spheres as highly sensitive SERS substrates. Chem. Asian J. 11, 2428–2435. DOI: 10.1002/asia.201600821.10.1002/asia.201600821
  15. 15. Supraja, N., Prasad, N.T.N.V.K.V. & David, E. (2016). Synthesis, characterization and antimicrobial activity of the micro/nano structured biogenic silver doped calcium phosphate. Appl. Nanosci. 6, 31–41. DOI: 10.1007/s13204-015-0409-7.10.1007/s13204-015-0409-7
  16. 16. Range, S., Hagmeyer, D., Rotan, O., Sokolova, V., Verheyen, J., Siebers, B. & Epple, M. (2015). A continuous method to prepare poorly crystalline silver-doped calcium phosphate ceramic with antibacterial properties. RSC Adv. 5, 43172. DOI: 10.1039/C5RA00401B.10.1039/C5RA00401B
  17. 17. Shin, Y.S., Park, M., Kim, H.K., Jin, F.L. & Park, S.J. (2014). Synthesis of Silver-doped Silica-complex Nanoparticles for Antibacterial Materials. Bull. Korean Chem. Soc. 35, 2979–2984. DOI: 10.5012/bkcs.2014.35.10.2979.10.5012/bkcs.2014.35.10.2979
  18. 18. Muniz-Miranda, M. (2003). Silver-doped silica colloidal nanoparticles. Characterization and optical measurements. Colloids Surf. A Physicochem. Eng. Asp. 217, 185–189. DOI: 10.1016/S0927-7757(02)00575-7.10.1016/S0927-7757(02)00575-7
  19. 19. Muzamil, M., Khalid, N., Aziz, M.D. & Abbas, S.A. (2014). Synthesis of silver nanoparticles by silver salt reduction and its characterization. IOP Conf. Ser: Mater Sci. Eng. 60, 1–8. DOI: 10.1088/1757-899X/60/1/012034.10.1088/1757-899X/60/1/012034
  20. 20. Pastoriza-Santos, I. & Liz-Marźan, L.M. (1999). Formation and stabilization of silver nanoparticles through reduction by N, N-dimethylformamide. Langmuir. 15, 948–951. DOI: 10.1021/la980984u.10.1021/la980984u
  21. 21. Bykkam, S., Ahmadipour, M., Narisngam, S., Kalagadda, V.R. & Chidurala, S.C. (2015). Extensive studies on X-ray diffraction of green synthesized silver nanoparticles. Adv. Nanopart. 4, 1–10. DOI: 10.4236/anp.2015.41001.10.4236/anp.2015.41001
  22. 22. Socol, G., Socol, M., Sima, L., Petrescu, S., Enulescu, M., Sima, F., Miroiu, M., Popescu-Pelin, G., Stefan, N., Critescu, R., Mihailescu, C.N., Stanulescu, A., Sutan, C. & Mihailescu, I.N. (2012) Combinatorial pulsed laser deposition of Ag-containing calcium phosphate coatings. Dig. J. Nanomat. Biostruct. 7, 563–576.
  23. 23. Rau, J., Fosca, M., Graziani, V., Egorov, A.A., Zobkov, Y.V., Fedotov, A.Y., Ortenzi, M., Caminiti, R., Baranchikov, A. & Komlev, V.S. (2016). Silver-doped calcium phosphate bone cements with antibacterial properties. J. Funct. Biomater. 7, 10; DOI: 10.3390/jfb7020010.10.3390/jfb7020010493246727096874
  24. 24. http://periodictable.com/Elements/047/data.html
  25. 25. Iconaru, L.S., Chapon, P., LeCoustumer, P. & Predoi, D. (2014). Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method. Scientific World J. 11, 165351. DOI: 10.1155/2014/165351.10.1155/2014/165351391349724523630
  26. 26. Hardness of ZrO2 (zirconia) is considerably higher (1200 kg/mm2 or 11.8 GPa [26a] in comparison with calcium phosphates (2.7–4.9 GPa);
  27. 26a; a: Grave, O.A. (2008). in Chapter 10, pp 169-193. Ceramic and glass materials. Structures, properties and processing. James F. Shackelford and Robert H. Doremus Eds. Springer Science+Business Media, LLC. DOI: 10.1007/978-0-387-73362-3.10.1007/978-0-387-73362-3
  28. 26b: Slósarczyk, A. & Białoskórski, J. (1998). Hardness and fracture toughness of dense calcium–phosphate-based materials. J. Mat. Sci.: Materials in Medicine. 9, 103–108.
  29. 27. Sekuła, J., Nizioł, J., Rode, W. & Ruman, T.S. (2015). Gold nanoparticle-enhanced target (AuNPET) as universal solution for laser desorption/ionization mass spectrometry analysis and imaging of low molecular weight compounds. Anal. Chim. Acta. 875, 61–72. DOI: 10.1016/j.aca.2015.01.046.10.1016/j.aca.2015.01.04625937107
  30. 28. Chow, L.C. & Eanes, E.D (2001).Solubility of Calcium Phosphates. in Octacalcium Phosphate. Monogr. Oral Sci. 13, 94–111. DOI: 10.1159/isbn.978-3-318-00704-6.10.1159/isbn.978-3-318-00704-6
  31. 29. Nizioł, J., Zieliński, Z., Rode, W. & Ruman, T. (2013). Matrix-free laser desorption-ionization with silver nanoparticle enhanced steel targets, Int. J. Mass Spectrom. 335, 22–32. DOI: 10.1016/j.ijms.2012.10.009.10.1016/j.ijms.2012.10.009
  32. 30. Jarvis, W.R. & Martone, W.J. (1992). Predominant pathogens in hospital infections. J. Antimicrob. Chemother. 29, 19–24. DOI: 10.1093/jac/29.suppl_A.19.10.1093/jac/29.suppl_A.191601752
  33. 31. Zhang, X., Gang, X., Wang, Y., Zhao, Y., Su, H. & Tan, T. (2017). Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr. Polymer. 169, 101–107. DOI: 10.1016/j.carbpol.2017.03.073.10.1016/j.carbpol.2017.03.07328504125
  34. 32. Vila, L., Marcos, R. & Hernández, A. (2017). Long-term effects of silver nanoparticles in Caco-2 cells. Nanotoxicol. 11, 771–780. DOI: 10.1080/17435390.2017.1355997.10.1080/17435390.2017.135599728707555
Language: English
Page range: 6 - 13
Published on: Jun 28, 2019
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 K. Szmuc, M. Kus-Liskiewicz, Ł. Szyller, D. Szmuc, M. Stompor, I. Zawlik, T. Ruman, S. Wołowiec, J. Cebulski, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.