Have a personal or library account? Click to login
Comparison of photoacoustic, diffuse reflectance, attenuated total reflectance and transmission infrared spectroscopy for the study of biochars Cover

Comparison of photoacoustic, diffuse reflectance, attenuated total reflectance and transmission infrared spectroscopy for the study of biochars

Open Access
|Jan 2019

References

  1. 1. Tag, A.T., Duman G., Ucar, S. & Yanik, J. (2016). Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J. Anal. Appl. Pyrol. 120, 200-206. DOI: 10.1016/j.jaap.2016.05.006.10.1016/j.jaap.2016.05.006
  2. 2. Lehmann, J., Czimczik, C., Laird, D. & Sohi, S. (2009). Stability of biochar in soil, In Biochar for Environmental Management: Science and Technology; Lehmann, J., Stephen, J., Eds.; Earthscan Publ.: London, 183-205.
  3. 3. Yang, C.Q., Simms, J.R. (1995). Comparison of photoacoustic, diffuse reflectance and transmission infrared spectroscopy for the study of carbon fibers. Fuel 74, 543-548. DOI: 10.1016/0016-2361(95)98357-K.10.1016/0016-2361(95)98357-
  4. 4. Gomez-Serrano, V., Piriz-Almeida, F., Duran-Valle, C.J. &Pastor-Villegas, J. (1999) Formation of oxygen structures by air activation. A study by FT-IR spectroscopy. Carbon 37, 1517-1528. DOI: 10.1016/S0008-6223(99)00025-1.10.1016/S0008-6223(99)00025-1
  5. 5. Yarwood, J. (1993). Fourier Transform Infrared Reflection Spectroscopy for surface analysis Analytical Proceedings, Surface Analysis 30, 13-18.10.1039/ap9933000013
  6. 6. Kim, K.H., Kim, J.Y., Cho, T.S. & Choi, J.W. (2012). Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource Technol. 118, 158-162. DOI: 10.1016/j.biortech.2012.04.094.10.1016/j.biortech.2012.04.09422705519
  7. 7. Ghani, W.A.K., Azlina, W. & Da Silva, G. (2014). Sawdust- derived biochar: Characterization and CO2 adsorption/ desorption study. J. Appl. Sci. 14, 1450-1454. DOI: 10.3923/ jas.2014.1450.1454.10.3923/jas.2014.1450.1454
  8. 8. Mukome, F.N.D., Zhang, X., Silva, L.C.R., Six, J. & Parikh, S.J. (2013). Use of chemical and physical characteristics to investigate trends in biochar feedstock. J. Agric. Food Chem. 61, 2196-2204. DOI: 10.1021/jf3049142.10.1021/jf3049142415470623343098
  9. 9. Mašek, O., Budarin, V., Gronnow, M., Crombie, K. &Brownsort, P. (2013). Microwave and slow pyrolysis biochar - comparison of physical and functional properties. J. Anal. Appl. Pyrolysis 100, 41-48. DOI: 10.1016/j.jaap.2012.11.015.10.1016/j.jaap.2012.11.015
  10. 10. Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M. & Ro, K.S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technol. 107, 419-428. DOI: 10.1016/j. biortech.2011.11.084.10.1016/j.biortech.2011.11.084
  11. 11. Liu, Y., He, Z. & Uchimiya, M. (2015). Comparison of biochar formation from various agricultural by-products using FTIR spectroscopy. Modern Appl. Sci. 9, 246-253. DOI: 10.5539/mas.v9n4p246.10.5539/mas.v9n4p246
  12. 12. Kieluweit, M., Nico, P.S., Johnson, M.G. & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. & Technol. 44, 1247-1253. DOI: 10.1021/es9031419.10.1021/es903141920099810
  13. 13. Chia, C.H., Gong, B., Joseph, S.D., Marjo, C.E., Munroe P. & Rich A.M. (2012). Imaging of mineral-enriched biochar by FTIR, Raman and SEM-EDX. Vibrational Spectroscopy 62, 248-257. DOI: 10.1016/j.vibspec.2012.06.006.10.1016/j.vibspec.2012.06.006
  14. 14. Al-Wabel, M.I., Al-Omran, A., El-Naggar, A.H. & Nadeem, M. (2013). Pyrolysis temperature induces changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technol. 131, 374-379. DOI: 10.1016/j.biortech.2012.12.165.10.1016/j.biortech.2012.12.16523376202
  15. 15. Abdulraazaq, H., Jol, H., Husni, A. & Abu-Bakr, R. (2014). Characterization and stabilization of biochar obtained from empty fruit bunch, wood and rice husk. BioResources 9, 2888-2898. DOI: 10.15376/biores.9.2.2888-2898.10.15376/biores.9.2.2888-2898
  16. 16. Angin, D. (2013). Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technol. 128, 593-597. DOI: 10.1016/j.biortech.2012.10.150.10.1016/j.biortech.2012.10.15023211485
  17. 17. Jung, K.W., Jeong, T.U., Kang, H.J., Ahn, K.H. (2016). Characteristics of biochar derived from marine macroalgae and fabrication of granular biochar by entrapment in calcium-alginate beads for phosphate removal from aqueous solution. Bioresource Technol. 211, 108-116. DOI: 10.1016/j. biortech.2016.03.066.10.1016/j.biortech.2016.03.06627010340
  18. 18. Qiu, Y., Cheng, H., Xu, C. & Sheng, G.D. (2008). Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption. Water Research 42, 567-574. DOI: 10.1016/j.watres.2007.07.051.10.1016/j.watres.2007.07.05117719075
  19. 19. Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M.A. & Sonoki, T. (2014). Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11, 6613-6621. DOI: 10.5194/bgd-11-11727-2014.10.5194/bgd-11-11727-2014
  20. 20. Harris, K., Gaskin, J., Cabrera, M., Miller, W. & Das, K.C. (2013). Characterization and mineralization rates of low temperature peanut hull and pine chip biochars. Agronomy 3 (2), 294-312. DOI: 10.3390/agronomy3020294.10.3390/agronomy3020294
  21. 21. Wang, C., Tu, Q., Dong, D., Strong, P.J., Wang, H., Sun, B. & Wu, W. (2014). Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting. J. Hazard. Mater. 280, 409-416. DOI: 10.1016/j.jhazmat.2014.08.030.10.1016/j.jhazmat.2014.08.03025194558
  22. 22. Cao, X. & Harris, W. (2010). Properties of dairy-manurederived biochar pertinent to its potential use in remediation. Bioresource Technol. 101, 5222-5228. DOI: 10.1016/j.biortech. 2010.02.052.10.1016/j.biortech.2010.02.05220206509
  23. 23. Michaelian, K.H. (2010). Photoacoustic IR spectroscopy, 2nd Ed.,Wiley-VCH Verlag GMBH&Co.10.1002/9783527633197
  24. 24. Brewer, C.E., Schmidt-Rohr, K., Satrio, J.A. & Brown, R.C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress & Sustainable Energy 28, 386-396. DOI: 10.1002/ep.10378.10.1002/ep.10378
  25. 25. Yuan, J.H., Xu, R.K. & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technol. 102, 3488-3497. DOI: 10.1016/j.biortech.2010.11.018.10.1016/j.biortech.2010.11.018
  26. 26. Oleszczuk, P., Jośko, I., Futa, B., Pasieczna-Patkowska, S., Pałys, E. & Kraska, P. (2014). Effect of pesticides on microorganisms, enzymatic activity and plant in biocharamended soil. Geoderma 214-215, 10-18. DOI: 10.1016/j. geoderma.2013.10.010.10.1016/j.geoderma.2013.10.010
  27. 27. Zielińska, A., Oleszczuk, P., Charmas, B., Skubiszewska- -Zięba, J. & Pasieczna-Patkowska, S. (2015). Effect of sewage sludge properties on the biochar characteristics. J. Anal. Appl. Pyrolysis 112, 201-213. DOI: 10.1016/j.jaap.2015.01.025.10.1016/j.jaap.2015.01.025
  28. 28. Gogna, M. & Goacher, R.E. (2018). Comparison of three Fourier transform infrared spectroscopy sampling techniques for distinction between lignocellulose samples. BioResources 13(1), 846-860. DOI: 10.15376/biores.13.1.846-860.10.15376/biores.13.1.846-860
  29. 29. Faix, O. & Böttcher, J.H. (1992). The influence of particle size and concentration in transmission and diffuse reflectance spectroscopy of wood. Holz als Roh- und Werkstoff 50(6), 221-226. DOI: 10.1007/BF02650312.10.1007/BF02650312
  30. 30. Zielińska, A. & Oleszczuk, P. (2015). The conversion of sewage sludge into biochar reduces polycyclic aromatic hydrocarbon content and ecotoxicity but increases trace metal content. Biomass & Bioenergy 75, 235-244. DOI: 10.1016/j.biombioe.2015.02.019.10.1016/j.biombioe.2015.02.019
  31. 31. Novak, J.M., Lima, I., Xing, B., Gaskin, J.W., Steiner, C., Das, K.C., Ahmedna, M., Rehrah, D., Watts, D.W., Busscher, W.J. & Schomberg, H. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals Environ. Sci. 3, 195-206.
  32. 32. Gregg, S.J. & Sing, K.S.W. (1982). Adsorption, Surface Area and Porosity, Academic Press, London.
  33. 33. Qui, Y. & Ling, F. (2006). Role of surface functionality in the adsorption of anionic dyes on modified polymeric sorbents. Chemosphere 64, 963-971. DOI: 10.1016/j.chemosphere.2006.01.003.10.1016/j.chemosphere.2006.01.003
  34. 34. Zawadzki, J. (1989). Infrared Spectroscopy in Surface Chemistry of Carbons, in: Chemistry and Physics of Carbon, Vol. 21, Thrower, P.A., Ed.; Dekker: New York.
  35. 35. Morterra, C. & Low, M.J.D. (1982). The nature of the 1600 cm−1 band of carbons. Spectroscopy Letters 15, 689-697.10.1080/00387018208068024
  36. 36. Morterra, C., O’Shea, M.L., Low, M.J.D. (1988). Infrared studies of carbons - IX. The vacuum pyrolysis of non-oxygen- -containing materials: PVC. Materials Chemistry and Physics 20, 123-144.10.1016/0254-0584(88)90104-6
  37. 37. Chukanov, N.V. (2014). Infrared spectra of mineral species, Extended Library, Vol. 1, Springer.10.1007/978-94-007-7128-4
  38. 38. Bourke, J., Manley-Harris, M., Fushimi, C., Dowaki, K., Nunoura, T. & Antal, M.J. (2007). Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized Charcoal. Industrial Engin. Chem. Res. 46, 5954-5967. DOI: 10.1021/ie070415u.10.1021/ie070415u
  39. 39. Lua, A.C., Yang, T. & Guo, J. (2004). Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J. Anal. Appl. Pyrolysis 72, 279-287. DOI: 10.1016/j.jaap.2004.08.001.10.1016/j.jaap.2004.08.001
Language: English
Page range: 75 - 83
Published on: Jan 11, 2019
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Sylwia Pasieczna-Patkowska, Jarosław Madej, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.