Have a personal or library account? Click to login
The Effects of Epoxidized Acrylated Castor Oil (EACO) on Soft Poly (vinyl chloride) Films as a Main Plasticizer Cover

The Effects of Epoxidized Acrylated Castor Oil (EACO) on Soft Poly (vinyl chloride) Films as a Main Plasticizer

Open Access
|Jan 2019

References

  1. 1. Chen, J.X., Li, Y., Wang, J., Huang, K., Li, X. & Nie, J. Jiang. (2017). Synthesis and application of environmental soybean oil-based epoxidized glycidyl ester plasticizer for poly(vinyl chloride). European J. Lipid Sci. Technol. 119 (5). DOI: 10.1002/ejlt.201600216.10.1002/ejlt.201600216
  2. 2. Bocqué, M., Voirin, C., Lapinte, V., Caillol, S. & Robin, J.. (2016). Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties. J. Polym. Sci. Part B: Polymer Physics. 54 (1):11-33. DOI: 10.1002/pola.27917.10.1002/pola.27917
  3. 3. Choi, W., Chung, J.W. & Kwak, S. (2014). Unentangled starshape poly(ε-caprolactone)s as phthalate-free PVC plasticizers designed for non-toxicity and improved migration resistance. ACS Applied Materials & Interfaces. 6 (14), 11118-11128. DOI: 10.1021/am500740v.10.1021/am500740v
  4. 4. Ventrice, P., Ventrice, D., Russo, E. & De. Sarro., G. (2013). Phthalates: European regulation, chemistry, pharmacokinetic and related toxicity. Environ. Toxicol. Pharmacol. 36 (1):88-96. DOI: 10.1016/j.etap.2013.03.014.10.1016/j.etap.2013.03.014
  5. 5. Gardner, S.T., Wood, A.T., Lester, R., Onkst, P.E., Burnham, N., Perygin, D.H. & Rayburn, J. (2016). Assessing differences in toxicity and teratogenicity of three phthalates, Diethyl phthalate, Di-n-propyl phthalate, and Di-n-butyl phthalate, using Xenopus laevis embryos. J. Toxicol. & Environ. Health. 79 (2):1-12. DOI: 10.1080/15287394.2015.1106994.10.1080/15287394.2015.1106994
  6. 6. Chen, X., Xu, S., Tan, T., Lee, S.T., Cheng, S.H., Lee, F.W.F., Xu, S.J.L. & Ho, K.C. (2014). Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures. Int. J. Environ. Res. Public Health. 11 (3), 3156-3168. DOI: 10.3390/ijerph110303156.10.3390/ijerph110303156
  7. 7. Li, J. & Ko, Y.C. (2012). Plasticizer incident and its health effects in Taiwan. The Kaohsiung journal of medical sciences. 28 (7), S17-S21. DOI: 10.1016/j.kjms.2012.05.005.10.1016/j.kjms.2012.05.005
  8. 8. Yao, L., Chen, Q., Xu, W., Ye, Z., Shen, Z. & Chen, M.. (2017). Preparation of cardanol based epoxy plasticizer by click chemistry and its action on poly(vinyl chloride). J. Appl. Polym. Sci. 134 (23), 44890. DOI: 10.1002/APP.44890.10.1002/app.44890
  9. 9. Jia, P., Zhang, M., Hu, L. & Zhou, Y. (2016). Green plasticizers derived from soybean oil for poly(vinyl chloride) as a renewable resource material. Korean J. Chem. Engineer. 33 (3), 1080-1087. DOI: 10.1007/s11814-015-0213-9.10.1007/s11814-015-0213-9
  10. 10. Feng, G., Yun, H., Pu-you, J., Ma, Y. & Yong-hong, Z. (2015). Influence of a nitrogen-containing oil-based plasticizer on mechanical, thermal stability and fire performance of plasticized poly(vinyl chloride) and study of its mechanism of flame retardancy with Py-GC/MS. Industrial Crops and Products. 77, 883-894. DOI: 10.1016/ j.indcrop.2015.09.032.10.1016/j.indcrop.2015.09.032
  11. 11. Qiu, J.F., Zhang, M.Q., Rong, M.Z., Wu, S.P. & Karger- -Kocsis, A.J. (2013). Rigid bio-foam plastics with intrinsic flame retardancy derived from soybean oil. J. Mater. Chem. A, 1(7), 2533-2542. DOI: 10.1039/C2TA01404A.10.1039/201404
  12. 12. Jia, P., Zhang, M., Hu, L., Zhou, J., Feng, G. & Zhou, Y. (2015). Thermal degradation behavior and flame retardant mechanism of poly(vinyl chloride) plasticized with a soybean-oil-based plasticizer containing phosphaphenanthrene groups. Polymer Degradation and Stability. 121, 292-302. DOI: 10.1016/j.polymdegradstab. 2015.09.020.10.1016/j.polymdegradstab.2015.09.020
  13. 13. Li, M., Li, S., Xia, J., Ding, C., Wang, M., Xu, L., Yang, X. & Huang, K. (2017). Tung oil based plasticizer and auxiliary stabilizer for poly(vinyl chloride). Materials & Design. 122, 366-375. DOI: 10.1016/j.matdes.2017.03.025.10.1016/j.matdes.2017.03.025
  14. 14. Chen, J., Wang, Y., Huang, J., Li, K. & Nie, X. (2018). Synthesis of tung oil based triglycidyl ester plasticizer and its effects on poly(vinyl chloride) soft films. ACS Sustainable Chemistry & Engineering. 6 (1), 642-651. DOI: 10.1021/acssuschemeng.7b02989.10.1021/acssuschemeng.7b02989
  15. 15. Jia, P., Hu, L., Yang, X., Zhang, M., Shang, Q., Zhou, A.Y. (2017). Internally plasticized PVC materials via covalent attachment of aminated tung oil methyl ester. RSC Advances. 7 (48), 30101-30108. DOI: 10.1039/c7ra04386d.10.1039/c7ra04386d
  16. 16. Ang, D.T., Khong, Y.K. & Gan, S.N. (2016). Palm oil- -based compound as environmentally friendly plasticizer for poly(vinyl chloride). J. Vinyl and Additive Technol. 22 (1):80-87. DOI: 10.1002/vnl.21434.10.1002/vnl.21434
  17. 17. Jia, P., Zhang, M., Hu, L. & Zhou, Y. (2016). A novel biobased polyester plasticizer prepared from palm oil and its plasticizing effect on poly (vinyl chloride). Polish J. Chemical Technol. 18 (1):9-14. DOI: 10.1515/pjct-2016-0002.10.1515/pjct-2016-0002
  18. 18. Carbonell-Verdu, A., Garcia-Sanoguera, D., Jorda-Vilaplana, A., Sanchez-Nacher, L. & Balart, R. (2016). A new biobased plasticizer for poly(vinyl chloride) based on epoxidized cottonseed oil. J. Appl. Polym. Sci. 133 (27), 43642. DOI: 10.1002/APP.43642.10.1002/app.43642
  19. 19. Carbonell-Verdu, A., Samper, M.D., Garcia-Garcia, D., Sanchez-Nacher, L. & Balart, R. (2017). Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid). Industrial Crops and Products. 104, 278-286. DOI: 10.1016/j.indcrop.2017.04.050.10.1016/j.indcrop.2017.04.050
  20. 20. Faria-Machado, A.F., Silva, M.A.D., Vieira, M.G.A., Beppu, M.M. (2013). Epoxidation of modified natural plasticizer obtained from rice fatty acids and application on polyvinylchloride films. J. Appl. Polymer Sci. 127 (5), 3543-3549. DOI: 10.1002/app.37671.10.1002/app.37671
  21. 21. Nihul, PG., Mhaske, S.T., Shertukde, V.V. (2014). Epoxidized rice bran oil (ERBO) as a plasticizer for poly(vinyl chloride) (PVC). Iranian Polymer J. 23 (8), 599-608. DOI: 10.1007/s13726-014-0254-7.10.1007/s13726-014-0254-7
  22. 22. Ogunniyi, D.S. (2006). Castor oil: a vital industrial raw material. Bioresource technology. 97 (9), 1086-91. DOI: i:10.1016/j.biortech.2005.03.028.10.1016/j.biortech.2005.03.028
  23. 23. Raju, P., Nandanan, V. & Sunil, K.N.K. (2007). A Study on the Use of Castor Oil as Plasticizer in Natural Rubber Compounds. Progress in rubber, plastics and recycling technology. 23(3), 169-180.10.1177/147776060702300302
  24. 24. Tsujimoto, T., Haza, Y., Yin, Y. & Uyama, H. (2014). Synthesis of branched poly(lactic acid) bearing a castor oil core and its plasticization effect on poly(lactic acid). Polymer J. 43 (4), 425-430. DOI: 10.1038/pj.2011.3.10.1038/pj.2011.3
  25. 25. Mehta, B., Kathalewar, M. & Sabnis, A.. (2014). Diester based on castor oil fatty acid as plasticizer for poly(vinyl chloride). J. Appl. Polymer Sci. 131 (11), 2928-2935. DOI: 10.1002/APP.40354.10.1002/APP.40354
  26. 26. Jia, P., Bo, C., Zhang, L., Hu, L., Zhang, M. & Zhou, Y. (2015). Synthesis of castor oil based plasticizers containing flame retarded group and their application in poly (vinyl chloride) as secondary plasticizer. J. Industrial Engineer. Chem. 28, 217-224. DOI:10.1016/j.jiec.2015.02.017.10.1016/j.jiec.2015.02.017
  27. 27. Jia, P., Hu, L., Zhang, M. & Zhou, Y. (2016). TG-FTIR and TG-MS analysis applied to study the flame retardancy of PVC-castor oil-based chlorinated phosphate ester blends. J. Thermal Anal. Calorim. 124(3), 1331-1339. DOI: 10.1007/s10973-015-5199-3.10.1007/s10973-015-5199-3
  28. 28. Jia, P., Hu, L., Zhang, M., Feng, G. & Zhou, Y. (2017). Phosphorus containing castor oil based derivatives: Potential non-migratory flame retardant plasticizer. European Polymer J. 87, 209-220. DOI: 10.1016/j.eurpoly mj.2016.12.023.10.1016/j.eurpolymj.2016.12.023
  29. 29. Feng, G., Jia, P., Zhang, L., Hu, L., Zhang, M. & Zhou, Y. (2015). Synthesis of a novel phosphorus-containing plasticizer based on castor oil and its application for flame retardancy of polyvinyl chloride. Korean J. Chem. Engineer. 32(6), 1201-1206. DOI: 10.1007/s11814-014-0288-8.10.1007/s11814-014-0288-8
  30. 30. Jia, P., Zhang, M., Hu, L., Feng, G., Bo, C. & Zhou, Y. (2015). Synthesis and application of environmental castor oil based polyol ester plasticizers for poly (vinyl chloride). ACS Sustainable Chemistry & Engineering, 3(9), 2187-2193. DOI: 10.1021/acssuschemeng.5b00449.10.1021/acssuschemeng.5b00449
  31. 31. Esen, H. & Çayli, G. (2016). Epoxidation and polymerization of acrylated castor oil. European J. Lipid Sci. Technol. 118(6), 959-966. DOI: 10.1002/ejlt.201500132.10.1002/ejlt.201500132
  32. 32. Çayli, G., Gürbüz, D. & Çınarli, A. (2018). Characterization and Polymerization of Epoxidized Methacrylated Castor Oil. European J. Lipid Sci. Technol. DOI: 10.1002/ejlt.201700189.10.1002/ejlt.201700189
  33. 33. Şahin, Y.M., Çaylı, G., Çavuşoğlu, J., Tekay, E. & Şen. S. (2016). Cross-linkable epoxidized maleinated castor oil: a renewable resin alternative to unsaturated polyesters. Int. J. Polymer Sci. DOI: 10.1155/2016/5781035.10.1155/2016/5781035
  34. 34. Müller, R. & Wilke, G. (2014). Synthesis and radiation curing of acrylated castor oil glycerides. J. Coatings Technol. Res. 11(6), 873-882. DOI: 10.1007/s11998-014-9596-5.10.1007/s11998-014-9596-5
  35. 35. Shibata, M. & Obara, S. (2012). Photo-cured organic- -inorganic hybrid composites of acrylated castor oil and methacrylate- substituted polysilsesquioxane. J. Appl. Polymer Sci. 126(S2). DOI: 10.1002/app.36582.10.1002/app.36582
  36. 36. Wang, M., Song, X., Jiang, J., Xia, J. & Li, M. (2017). Binary amide-containing tung-oil-based Ca/Zn stabilizers: effects on thermal stability and plasticization performance of poly(vinyl chloride) and mechanism of thermal stabilization. Polymer Degradation and Stability. 143, 106-117. DOI: 10.1016/j.polymdegradstab.2017.06.022.10.1016/j.polymdegradstab.2017.06.022
  37. 37. Chen, J., Nie, X. & Jiang, J. (2018). Synthesis and application of a novel cardanol-based plasticizer as secondary or main plasticizer for poly (vinyl chloride). Polymer International. 67(3), 269-275. DOI: 10.1002/pi.5503.10.1002/pi.5503
  38. 38. Chen, J., Liu, Z., Nie, X. & Jiang, J. (2018). Synthesis and application of a novel environmental C26 diglycidyl ester plasticizer based on castor oil for poly (vinyl chloride). J. Mater. Sci. 53(12), 8909-8920. DOI: 10.1007/s10853-018-2206-7.10.1007/s10853-018-2206-7
  39. 39. Chandola, M. & Marathe, S. (2008). A QSPR for the plasticization efficiency of polyvinylchloride plasticizers. J. Molec. Graphics and Modelling. 26(5), 824-828. DOI: 10.1016/j.jmgm.2007.04.008.10.1016/j.jmgm.2007.04.008
  40. 40. Haryono, A., Triwulandari, E. & Jiang, P. (2017). Interaction between vegetable oil based plasticizer molecules and polyvinyl chloride, and their plasticization effect. AIP Conference Proceedings. 1803(1), 020045. DOI: 10.1063/1.4973172.10.1063/1.4973172
  41. 41. Yang, Y., Huang, J., Zhang, R. & Zhu, J. (2017). Designing bio-based plasticizers: Effect of alkyl chain length on plasticization properties of isosorbide diesters in PVC blends. Materials & Design. 126, 29-36. DOI:10.1016/j.matdes.2017.04.005.10.1016/j.matdes.2017.04.005
Language: English
Page range: 13 - 19
Published on: Jan 11, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Fei Song, Haoyu Xia, Puyou Jia, Meng Zhang, Lihong Hu, Yonghong Zhou, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.