Have a personal or library account? Click to login

Preparation of Activated Carbon from the Biodegradable film for Co2 Capture Applications

Open Access
|Oct 2018

References

  1. 1. Manan, Z.A., Nawi, W.N.R.M., Alwi, S.R.W. & Klemes, J.J. (2017). Advances in Process Integration research for CO2 emission reduction - A review. J. Clean. Prod. 167, 1-13. DOI: 10.1016/j.jclepro.2017.08.138.10.1016/j.jclepro.2017.08.138
  2. 2. IPCC, Direct global warming potentials, IPCC fourth assess. Rep. Clim. Change 2007 (2007) 2.10.2.
  3. 3. Stroud, T., Smith, T.J., Saché, E. L., Santos, J.L., Centeno, M.A., Arellano-Garcia, H., Odriozol, J.A. & Reina T.R., (2018). Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Appl. Cat.B-Environ. 224, 125-135. DOI.org/10.1016/j.apcatb.2017.10.047.10.1016/j.apcatb.2017.10.047
  4. 4. Michalkiewicz, B., Srenscek-Nazzal, J. & Ziebro, J. (2009). Optimization of Synthesis Gas Formation in Methane Reforming with Carbon Dioxide. Cat. Lett.,129(1-2), 142-148, DOI: 10.1007/s10562-008-9797-6.10.1007/s10562-008-9797-6
  5. 5. Lubkowski, K., Arabczyk, W., Grzmil, B., Michalkiewicz, B. & Pattek-Janczyk, A. (2007), Passivation and oxidation of an ammonia iron catalyst. Appl. Catal. A-Gen. 329, 137-147, DOI: 10.1016/j.apcata.2007.07.006.10.1016/j.apcata.2007.07.006
  6. 6. Majewska, J. & Michalkiewicz, B. (2016). Production of hydrogen and carbon nanomaterials from methane using Co/ ZSM-5 catalyst. Int. J. Hydrogen. Energ. 41(20), 8668-8678, DOI: 10.1016/j.ijhydene.2016.01.097.10.1016/j.ijhydene.2016.01.097
  7. 7. Michalkiewicz, B. & Majewska, J. (2014). Diametercontrolled carbon nanotubes and hydrogen production. Int. J. Hydrogen Energ. 39(9), 4691-4697, DOI: 10.1016/j.ijhydene.2013.10.149.10.1016/j.ijhydene.2013.10.149
  8. 8. Majewska, J. & Michalkiewicz, B. (2014). Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5 Signifi cance of Ni content and temperature. New Carbon Mater. 29(2), 102-108, DOI: 10.1016/S1872-5805(14)60129-3.10.1016/S1872-5805(14)60129-3
  9. 9. Lu, G.Q., Costa, J.C., Duke, M., Giessler, S., Socolow, R., Williams, R.H. & Kreutz, T. (2007). Inorganic membranes for hydrogen production and purifi cation: a critical review and perspective. J. Colloid. Interface. Sci. 314, 589-603. DOI: 10.1016/j.jcis.2007.05.067.10.1016/j.jcis.2007.05.06717588594
  10. 10. Michalkiewicz, B. & Koren, Z.C. (2015). Zeolite membranes for hydrogen production from natural gas: state of the art. J. Porous Mat. 22(3), 635-646, DOI: 10.1007/s10934-015-9936-6.10.1007/s10934-015-9936-6
  11. 11. Ziebro, J., Skorupinska, B., Kadziolka, G. & Michalkiewicz, B. (2013). Synthesizing Multi-walled Carbon Nanotubes over a Supported-nickel Catalyst. Fuller Nanotub Car N. 21(4), 333-345, DOI: 10.1080/1536383X.2011.613543.10.1080/1536383X.2011.613543
  12. 12. Majewska, J. & Michalkiewicz, B. (2016). Preparation of Carbon Nanomaterials over Ni/ZSM-5 Catalyst Using Simplex Method Algorithm. Acta Phys. Pol. A. 129(1), 153-157, DOI: 10.12693/APhysPolA.129.153.10.12693/APhysPolA.129.153
  13. 13. Ziebro, J., Lukasiewicz, I., Borowiak-Palen, E., Michalkiewicz, B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology. 21(14), DOI: 10.1088/0957-4484/21/14/14530810.1088/0957-4484/21/14/14530820234080
  14. 14. Ziebro, J., Lukasiewicz, I., Grzmil B., Borowiak-Palen, E. & Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloy Compd. 485(1-2), 695-700, DOI: 10.1016/j.jallcom.2009.06.039.10.1016/j.jallcom.2009.06.039
  15. 15. Majewska, J. & Michalkiewicz, B. (2013). Low temperature one-step synthesis of cobalt nanowires encapsulated in carbon. Appl. Phys. A-Mater. 111(4), 1013-1016, DOI: 10.1007/s00339-013-7698-z.10.1007/s00339-013-7698-z
  16. 16. Michalkiewicz, B., Srenscek-Nazzal, J., Tabero, P., Grzmil, B. & Narkiewicz, U. (2008). Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chem. Pap. 62(1), 106-113, DOI: 10.2478/s11696-007-0086-4.10.2478/s11696-007-0086-4
  17. 17. Michalkiewicz, B. (2003). Partial oxidation of methane to oxygenates. Przem. Chem. 82(8-9), 627-628.
  18. 18. Michalkiewicz, B. (2005). Kinetics of partial methane oxidation process over the Fe-ZSM-5 catalysts. Chem. Pap. 59(6A), 403-408.
  19. 19. Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe- ZSM-5. Appl. Catal. A-Gen. 277(1-2), 147-153, DOI: 10.1016/j.apcata.2004.09.005.10.1016/j.apcata.2004.09.005
  20. 20. Michalkiewicz, B., Ziebro, J. & Srenscek-Nazzal, J. (2006). Direct oxidation of methane to formaldehyde. Przem. Chem. 85(8-9), 624-626.
  21. 21. Kałucki, K.,Michalkiewicz B., Morawski A.W., Arabczyk W. & Ziebro J. (1995). Przem Chem. 74(4), 135-136.
  22. 22. Markowska, A. & Michalkiewicz, B. (2009). Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem. Pap. 63(2), 105-110, DOI: 10.2478/s11696-008-0100-510.2478/s11696-008-0100-5
  23. 23. Michalkiewicz, B. (2011). Methane oxidation to methyl bisulfate in oleum at ambient pressure in the presence of iodine as a catalyst. Appl. Catal. A-Gen. 394(1-2), 266-268, DOI: 10.1016/j.apcata.2011.01.01410.1016/j.apcata.2011.01.014
  24. 24. Michalkiewicz, B. & Kosowski, P. (2007). The selective catalytic oxidation of methane to methyl bisulfate at ambient pressure. Catal. Comun. 8(12), 1939-1942, DOI: 10.1016/j. catcom.2007.03.01410.1016/j.catcom.2007.03.014
  25. 25. Michalkiewicz, B. & Kalucki, K. (2002). Direct conversion of methane into methanol formaldehyde and organic acids. Przem. Chem. 81(3), 165-170.
  26. 26. Jarosinska, M., Lubkowski, K.,Sosnicki, J.G. & Michalkiewicz, B. (2008). Application of Halogens as Catalysts of CH(4) Esterifi cation. Catal. Lett. 126(3-4), 407-412, DOI: 10.1007/s10562-008-9645-8.10.1007/s10562-008-9645-8
  27. 27. Michalkiewicz, B. (2006). Methane esterifi cation i oleum. Chem. Pap-Chem. Zvesti. 60(5), 371-374, DOI: 10.2478/ s11696-006-0067-z.10.2478/s11696-006-0067-z
  28. 28. Michalkiewicz, B. (2003). Methane conversion to methanol in condensed phase, Kinet Catal 44(6), 801-805, DOI: 10.1023/B:KICA.0000009057.79026.0b10.1023/B:KICA.0000009057.79026.0b
  29. 29. Michalkiewicz, B., Kalucki, K. & Sosnicki, J.G. (2003). Catalytic system containing metallic palladium in the process of methane partial oxidation, J. Catal. 215(1), 14-19, DOI: 10.1016/S0021-9517(02)00088-X.10.1016/S0021-9517(02)00088-X
  30. 30. Michalkiewicz, B. (2006). The kinetics of homogeneous catalytic methane oxidation. Appl. Catal A 307(2), 270-274, DOI: 10.1016/j.apcata.2006.04.006.10.1016/j.apcata.2006.04.006
  31. 31. Michalkiewicz, B. (2008). Assessment of the possibility of the methane to methanol transformation. Pol. J. Chem. Technol. 10(2), 20-26, DOI: 10.2478/v10026-008-0023-5.10.2478/v10026-008-0023-5
  32. 32. Michalkiewicz, B. (2006). Esterifi cation of methane as the fi rst stage in converting the natural gas to methanoll. Przem. Chem. 85(8-9), 620-623.
  33. 33. Michalkiewicz, B. & Balcer, S. (2012). Bromine catalyst for the methane to methyl bisulfate reaction. Pol. J. Chem. Technol. 14(4), 19-21, DOI: 10.2478/v10026-012-0096-z.10.2478/v10026-012-0096-z
  34. 34. Michalkiewicz, B., Jarosinska, M. & Lukasiewicz, I. (2009). Kinetic study on catalytic methane esterifi cation in oleum catalyzed by iodine. Chem. Eng. J. 154(1-3), 156-161, DOI: 10.1016/j.cej.2009.03.046.10.1016/j.cej.2009.03.046
  35. 35. Michalkiewicz, B., Ziebro, J. & Tomaszewska, M. (2006). Preliminary investigation of low pressure membrane distillation of methyl bisulphate from its solutions in fuming sulphuric acid combined with hydrolysis to methanol. J. Membrane Sci.286(1-2), 223-227, DOI: 10.1016/j.memsci.2006.09.039.10.1016/j.memsci.2006.09.039
  36. 36. Srenscek-Nazzal, J., Kaminska, W., Michalkiewicz, B. & Koren, Z.C. (2013). Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Ind Crop Pord. 47, 153-159, DOI: 10.1016/j.indcrop. 2013.03.004.10.1016/j.indcrop.2013.03.004
  37. 37. Duda, J.T., Kwiatkowski, M., Milewska-Duda, J. (2010). Application of clustering based gas adsorption models to analysis of microporous structure of carbonaceous materials. Appl. Surf Sci. 256(17), 5243-5248, DOI:10.1016/j.apsusc.2009.12.111.10.1016/j.apsusc.2009.12.111
  38. 38. Kwiatkowski, M., Duda, J.T. & Milewska-Duda, J. (2014). Application of the LBET class models with the original fl uid statemodel to an analysis of single, double and triple carbon dioxide, methane and nitrogen adsorption isotherms. Colloids Surf. A: Physicochem. Enginer. Asp. 457(1), 449-454, DOI: 10.1016/j.colsurfa.2014.06.021.10.1016/j.colsurfa.2014.06.021
  39. 39. Kwiatkowski, M., Duda, J.T. (2014). Szybka wielowariantowa analiza izoterm adsorpcji ditlenku węgla i metanu. Przem. Chem. 93(6), 878-881, DOI: 10.12916/przemchem.2014.878.
  40. 40. Michalkiewicz B., Majewska, J., Kadziotka, G., Bubacz, K., Mozia, S. & Morawski, A.W. (2014). Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modifi ed photocatalyst, J. CO2 Util. 5, 47-52, DOI: 10.1016/j.jcou.2013.12.004.10.1016/j.jcou.2013.12.004
  41. 41. Marcinkowski, D., Walesa-Chorab, M., Patroniak, V., Kubicki, M., Kadziolka, G. & Michalkiewicz, B. (2014). A new polymeric complex of silver(I) with a hybrid pyrazine-bipyridine ligand - synthesis, crystal structure and its photocatalytic activity. New. J. Chem. 38(2), 604-610, DOI: 10.1039/c3nj01187a.10.1039/c3nj01187a
  42. 42. Walesa-Chorab, M., Patroniak, V., Kubicki, M., Kadziolka, G., Przepiorski, J. & Michalkiewicz, B. (2012). Synthesis, structure, and photocatalytic properties of new dinuclear helical complex of silver(I) ions. J. Catal. 291, 1-8, DOI: 10.1016/j. jcat.2012.03.025.10.1016/j.jcat.2012.03.025
  43. 43. Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2015). Comparison of Optimized Isotherm Models and Error Functions for Carbon Dioxide Adsorption on Activated Carbon. J. Chem. Eng. Data. 60(11), 3148-3158, DOI: 10.1021/acs.jced.5b00294.10.1021/acs.jced.5b00294
  44. 44. Lendzion-Bielun, Z., Czekajlo, L., Sibera, D., Moszynski, D., Srenscek-Nazzal, J., Morawski, A.W., Wrobel, R.J., Michalkiewicz, B., Arabczyk, W. & Narkiewicz, U. (2018). Surface characteristics of KOH-treated commercial carbons applied for CO2 adsorption. Adsorpt. Sci. Technol. 36(1-2), 478-492, DOI: 10.1177/0263617417704527.10.1177/0263617417704527
  45. 45. Gesikiewicz-Puchalska, A., Zgrzebnicki, M., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wrobel, R.J. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids, Chem Eng J. 309, 159-171, DOI: 10.1016/j.cej.2016.10.005.10.1016/j.cej.2016.10.005
  46. 46. Kwiatkowski, M., Policicchio, A., Seredych, M. & Bandosz, T.J. (2016). Evaluation of CO2 interactions with S-doped nanoporous carbon and its composites with a reduced GO: Effect of surface features on an apparent physical adsorption mechanism. Carbon, 98, 250-258, DOI: 10.1016/j.carbon.2015.11.019.10.1016/j.carbon.2015.11.019
  47. 47. Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R., Gesikiewicz-Puchalska, A. & Michalkiewicz, B. (2016). Modifi cation of Commercial Activated Carbons for CO2 Adsorption. Acta. Phys. Pol. A. 129(3), 394-401, DOI: 48. Gong, J., Michalkiewicz, B., Chen, X., Mijowska, E., Liu, J., Jiang, Z., Wen, X. & Tang, T. (2014)., Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. Acs Sustain Chem. Eng. 2 (12), 2837-2844, DOI: 10.1021/sc500603h.10.1021/sc500603h
  48. 49. Deepu, J.B., Lange M., Cherkashinin, G., Issanin, A., Staudt, R. & Schneider J.J. (2013). Gas adsorption studies of CO2 and N2 in spatially aligned double-walled carbon nanotube arrays. Carbon, 61, 616-623. DOI.org/10.1016/j. carbon.2013.05.045.10.1016/j.carbon.2013.05.045
  49. 50. Cinke, M., Li, J., Bauschlicher, C., Ricca, A. & Meyyappan, M. (2003). CO2 adsorption in single-walled carbon nanotubes. Chem. Phys. Lett. 376 761-766. DOI.org/10.1016/ S0009-2614(03)01124-2.10.1016/S0009-2614(03)01124-2
  50. 51. Zgrzebnicki, M., Krauze, N., Gesikiewicz-Puchalska, A., Kapica-Kozar, J., PirogE., Jedrzejewska, A., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wrobel, R.J. (2017). Impact on CO2 Uptake of MWCNT after Acid Treatment Study. J. Nanomater. DOI: 10.1155/2017/7359591.10.1155/2017/7359591
  51. 52. Serafi n, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2017). Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 18, 73-79, DOI: 10.1016/j. jcou.2017.01.006.10.1016/j.jcou.2017.01.006
  52. 53. Mohd, A., Ghani W.A.W.A.K., Resitanim, N.Z. & Sanyang, L., (2013). A Review: Carbon Dioxide Capture: Biomass- Derived-Biochar and Its Applications, J. Dispers. Sci. Technol. 34(7), 2013, 974-984, DOI: 10.1080/01932691.2012.704753.10.1080/01932691.2012.704753
  53. 54. Alabadi, A., Razzaque, S., Yang, Y., Chen, S. & Tan, B. (2015). Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity. Chem. Eng. J. 281, 606-612. DOI: 10.1016/j.cej.2015.06.032.10.1016/j.cej.2015.06.032
  54. 55. Davida, E. & Kopac, J. (2014). Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. J. Anal. Appl. Pyrol. 110, 322-332. DOI: 10.1016/j. jaap.2014.09.021.10.1016/j.jaap.2014.09.021
  55. 56. Hao, W., Björkman, E., Lilliestråle, M. & Hedin, N. (2013). Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Appl Energ. 112, 526-532. DOI: org/10.1016/j.apenergy.2013.02.028.10.1016/j.apenergy.2013.02.028
  56. 57. Glonek, K., Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2016).Preparation of Activated Carbon from Beet Molasses and TiO2 as the Adsorption of CO2, Acta Phys Pol A. 129(1), 158-161, DOI: 10.12693/APhysPolA.129.158.10.12693/APhysPolA.129.158
  57. 58. Mlodzik, J., Srenscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2016). Activated Carbons from Molasses as CO2 Sorbents, Acta Phys Pol A. 129(3), 402-404, DOI: 10.12693/APhysPolA.129.402.10.12693/APhysPolA.129.402
  58. 59. Yang, X., Yi, H., Tang, X., Zhao, S., Yang Z., Ma, Y., Feng, T. & Cui, X. (2018). Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure, J. Environ. Sci. 67, 104-114, DOI: 10.1016/j. jes.2017.06.032.10.1016/j.jes.2017.06.03229778142
  59. 60. Gupta, H. & Singh, S. (2018). Kinetics and thermodynamics of phenanthrene adsorption from water on orange rind activated carbon, Environmental Technology & Innovation 10, 208-214, DOI: 10.1016/j.eti.2018.03.001.10.1016/j.eti.2018.03.001
  60. 61. Norouzi, S., Heidari, M., Alipour, V., Rahmanian, O., Fazlzadeh, M., Mohammadi-moghadam, F., Nourmoradi, H. & Goudarzi, B. (2018). Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste, Bioresource Technol. 258 48-56 DOI: 10.1016/j.psep.2018.04.026.10.1016/j.psep.2018.04.026
  61. 62. Shen, F., Liu, J., Zhang, Z., Dong, Y., Gu, Ch. (2018). Density functional study of hydrogen sulfi de adsorption mechanism on activated carbon. Fuel. Process. Technol. 171, 258-264DOI: 10.1016/j.fuproc.2017.11.026.10.1016/j.fuproc.2017.11.026
  62. 63. Baca, M., Cendrowski, K., Banach, P., Michalkiewicz, B., Mijowska, E., Kalenczuk, R.J. & Zielinska, B. (2017). Effect of Pd loading on hydrogen storage properties of disordered mesoporous hollow carbon spheres. Int J Hydrogen Energ 42(52), 30461-30469, DOI: 10.1016/j.ijhydene.2017.10.146.10.1016/j.ijhydene.2017.10.146
  63. 64. Wenelska, K., Michalkiewicz, B., Chen, X., Mijowska, E. (2014). Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity, Energy 75, 549-554, DOI: 10.1016/j.energy.2014.08.016.10.1016/j.energy.2014.08.016
  64. 65. Wenelska, K., Michalkiewicz, B., Gong, J., Tang, T., Kalenczuk, R., Chen, X. & Mijowska, E. (2013). In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage, Int J Hydrogen Energ. 38(36), 16179-16184, DOI: 10.1016/j.ijhydene.2013.10.008.10.1016/j.ijhydene.2013.10.008
  65. 66. Zielinska, B., Michalkiewicz, B., Chen, X., Mijowska, E. & Kalenczuk, R.J. (2016). Pd supported ordered mesoporous hollow carbon spheres (OMHCS) for hydrogen storage, Chem Phys Lett. 647, 14-19, DOI: 10.1016/j.cplett.2016.01.036.10.1016/j.cplett.2016.01.036
  66. 67. Zielinska, B., Michalkiewicz, B., Mijowska, E. & Kalenczuk, R.J. (2015). Advances in Pd Nanoparticle Size Decoration of Mesoporous Carbon Spheres for Energy Application, Nanoscale Res Lett. 10. DOI: 10.1186/s11671-015-1113-y.10.1186/s11671-015-1113-y462797026518029
  67. 68. Glonek, K., Wroblewska, A., Makuch, E., Ulejczyk, B., Krawczyk, K., Wrobel, R.J., Koren, Z.C. & Michalkiewicz, B. (2017)., Oxidation of limonene using activated carbon modifi ed in dielectric barrier discharge plasma. Appl. Surf. Sci. 420, 873-881. DOI: 10.1016/j.apsusc.2017.05.136.10.1016/j.apsusc.2017.05.136
  68. 69. Wroblewska, A., Makuch, E., Mlodzik, J. & Michalkiewicz, B. (2017). Fe-carbon nanoreactors obtained from molasses as effi cient catalysts for limonene oxidation. Green Porsec Synth6(4), 397-401. DOI: 10.1515/gps-2016-0148.10.1515/gps-2016-0148
  69. 70. Serafi n, J. (2017). Utlization of spent dregs for the production activated carbon for CO2 adsorption. Pol J Chem Technol. 19(2), 44-50. DOI: 10.1016/S1750-5836(07)00094-1.10.1016/S1750-5836(07)00094-1
  70. 71. Mlodzik, J., Wroblewska, A., Makuch, E., Wrobel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol, Catal. Today. 268, 111-120, DOI: 10.1016/j.cattod.2015.11.010.10.1016/j.cattod.2015.11.010
  71. 72. Kwiatkowski, M., Srenscek-Nazzal, J. & Michalkiewicz, B. (2017). An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12. Adsorption, 23(4), 551-561, DOI: 10.1007/s10450-017-9867-4.10.1007/s10450-017-9867-4
  72. 73. Kwiatkowski, M. & Broniek, E. (2017). An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation. Colloid. Surface. A. 529, 443-453, DOI: 10.1016/j. colsurfa.2017.06.028.10.1016/j.colsurfa.2017.06.028
  73. 74. Kwiatkowski, M., Fierro, V. & Celzard, A. (2017). Numerical studies of the effects of process conditions on the development of the porous structure of adsorbents prepared by chemical activation of lignin with alkali hydroxides. J. Colloid. Interf. Sci. 486, 277-286, DOI: 10.1016/j.jcis.2016.10.003.10.1016/j.jcis.2016.10.00327721076
  74. 75. Kwiatkowski, M., Kalderis, D. & Diamadopoulos, E. (2017). Numerical analysis of the infl uence of the impregnation ratio on the microporous structure formation of activated carbons, prepared by chemical activation of waste biomass with phosphoric acid. J. Phys. Chem. Solids. 105, 81-85, DOI: 10.1016/j.jpcs.2017.02.006.10.1016/j.jpcs.2017.02.006
  75. 76. Kwiatkowski, M. & Broniek, E. (2013). Application of the LBET class adsorption models to the analysis of microporous structure of the active carbons produced from biomass by chemical activation with the use of potassium carbonate. Colloids Surf. A. 427, 47-52, DOI: 10.1016/j.colsurfa.2013.03.002.10.1016/j.colsurfa.2013.03.002
  76. 77. Srenscek-Nazzal, J. & Michalkiewicz, B. (2011). The simplex optimization for high porous carbons preparation. Pol J Chem Technol., 13(4), 63-70, DOI: 10.2478/v10026-011-0051-4.10.2478/v10026-011-0051-4
  77. 78. Zee, M., Stoutjesdijk P.A.A. & Heijden, D.W. (1997). Structure-biodegradation relationships of polymeric materials. 1. Effect of degree of oxidation on biodegradability of carbohydrate polymers. J. Polymer. Environ. 3(4), 235-242.10.1007/BF02068678
  78. 79. Grima, S., Bellon- Maurel, V., Feuilloley, P. & Silvestre, F. (2002). Aerobic Biodegradation of Polymers in Solid-State Conditions: A Review of Environmental and Physicochemical Parameter Settings in Laboratory Simulation. J Polymer Environ. 8(4), 183-195. DOI: 10.1023/A:1015297727244.10.1023/A:1015297727244
  79. 80. Jayasekara, R., Harding, I., Bowater, I. & Lonergan, G. (2005). Biodegradability of Selected Range of Polymers and Polymer Blends and Standard Methods for Assessment of Biodegradation. J. Polymer. Environ. 13, 231-251. DOI: 10.1007/s10924-005-4758-2.10.1007/s10924-005-4758-2
  80. 81. Spychaj, T., Wilpiszewska, K. & Zdanowicz, M. (2013). Medium and high substituted carboxymethyl starch: Synthesis, characterization and application. Starch, 65, 22, DOI: 10.1002/ star.201200159.10.1002/star.201200159
  81. 82. Spychaj, T., Wilpiszewska, K. & Antosik, A. (2015). Novel hydrophilic carboxymethyl starch/montmorillonite nanocomposite fi lms. Carbohyd. polym. 128. DOI: 10.1016/j. carbpol.2015.04.02310.1016/j.carbpol.2015.04.02326005142
  82. 83. Serafi n, J., Czech, Z., Antosik, A., Wilpiszewska, K. & Michalkiewicz, B. 2016 P 418159.
  83. 84. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquérol, J. & Siemienewska, T., 1985, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity Pure Appl. Chem., 57, 603. DOI: https://doi.org/10.1515/iupac.57.0007 .10.1515/iupac.57.0007
Language: English
Page range: 75 - 80
Published on: Oct 17, 2018
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2018 J. Serafin, A.K. Antosik, K. Wilpiszewska, Z. Czech, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.