1. Jones, H., Handley, C., Pye, S. & Howlett, L. (2001). Review of BAT for New Waste Incineration, R&D Technical Report P4-100, part 3, November 2001, Environment Agency, Bristol.
2. Atănăsoae, P., Pentiuc, R. & Hopulele, E. (2016). Energy recovery of municipal solid waste for combined heat and power Production, in Proc. of International Conference and Exposition on Electrical and Power Engineering (EPE 2016), 842-845, 20-22 October 2016, Iasi, Romania.10.1109/ICEPE.2016.7781455
3. Gewald, D., Siokos, K., Karellas, S. & Spliethoff, H. (2012). Waste heat recovery from a landfi ll gas-fi red power plant, Renew. Sustain. Energy Rev. 16(4), 1779-1789. DOI: 10.1016/j.rser.2012.01.036.10.1016/j.rser.2012.01.036
4. Katsoyiannis, I.A., Gkotsis, P., Castellana, M. Cartechini, F. & Zouboulis, A.I. (2017). Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effl uent, J. Environ. Manage. 190, 132-139.DOI: 10.1016/j.jenvman.2016.12.040.10.1016/j.jenvman.2016.12.04028040589
5. Khalifa, A., Ahmad, H., Antar, M., Laoui, T. & Khayet, M. (2017). Experimental and theoretical investigations on water desalination using direct contact membrane distillation, Desalination, 404, 22-34. DOI: 10.1016/j.desal.2016.10.009.10.1016/j.desal.2016.10.009
7. Winter, D., Koschikowski, J., Gross, V., Maucher, D., Düver, D., Jositz, M., Mann, T. & Hagedorn, A. (2017). Comparative analysis of full-scale membrane distillation contactors- methods and modules, J. Membr. Sci. 524, 758-771. DOI: 10.1016/j.memsci.2016.11.080.10.1016/j.memsci.2016.11.080
10. Lokare, O.R., Tavakkoli, S., Khanna, V. & Vidic, R.D. (2018). Importance of feed recirculation for the overall energy consumption in membrane distillation systems, Desalination, 428, 250-254. DOI: 10.1016/j.desal.2017.11.037.10.1016/j.desal.2017.11.037
11. Cheng, L., Zhao, Y., Li, P., Li, W. & Wang, F. (2018). Comparative study of air gap and permeate gap membrane distillation using internal heat recovery hollow fi ber membrane module, Desalination, 426, 42-49. DOI: 10.1016/j. desal.2017.10.039.10.1016/j.desal.2017.10.039
12. González, D., Amigo, J. & Suárez, F. (2017). Membrane distillation: Perspectives for sustainable and improved desalination, Renew. Sustain. Energy Rev. 80, 238-259. DOI: 10.1016/j. rser.2017.05.078.10.1016/j.rser.2017.05.078
14. Bush, J.A., Vanneste, J. & Cath, T.Y. (2016). Membrane distillation for concentration of hypersaline brines from the Great Salt Lake: Effects of scaling and fouling on performance, effi ciency, and salt rejection, Sep. Purif. Technol. 170, 78-91. DOI: 10.1016/j.seppur.2016.06.028.10.1016/j.seppur.2016.06.028
15. Banat, F. & Jwaie, N. (2010). Autonomous Membrane Distillation Pilot Plant Unit Driven by Solar Energy: Experiences and Lessons Learned, Int. J. Sustain. Water & Env. Sys.1, 21-24. DOI: 10.5383/swes.0101.005.10.5383/swes.0101.005
18. Naidu, G., Jeong, S. & Vigneswaran, S. (2014). Infl uence of feed/permeate velocity on scaling development in a direct contact membrane distillation, Sep. Purif. Technol. 125, 291-300. DOI: 10.1016/j.seppur.2014.01.049.10.1016/j.seppur.2014.01.049
19. Edwie, F. & Chung, T.S. (2013). Development of simultaneous membrane distillation -crystallization (SMDC) technology for treatment of saturated brine, Chem, Eng. Sci. 98 160-172. DOI: 10.1016/j.ces.2013.05.008.10.1016/j.ces.2013.05.008
20. Dow, N., Gray, S., Li, J., Zhang, J., Ostarcevic, E., Liubinas, A., Atherton, P., Roeszler, G., Gibbs, A. & Duke, M. (2016). Pilot trial of membrane distillation driven by low grade waste heat: Membrane fouling and energy assessment, Desalination, 391, 30-42. DOI: 10.1016/j.desal.2016.01.023.10.1016/j.desal.2016.01.023
21. Duong, H.C., Gray, S. Duke, M., Cath, T.Y. & Nghiem, L.D. (2015). Scaling control during membrane distillation of coal seam gas reverse osmosis brine, J. Membr. Sci., 493, 673-682. DOI: 10.1016/j.memsci.2015.07.038.10.1016/j.memsci.2015.07.038
22. Bouchrit, R., Boubakri, A., Hafi ane, A. & Bouguecha, S.Al-T. (2015). Direct contact membrane distillation: Capability to treat hyper-saline solution, Desalination, 376, 117-129. DOI: 10.1016/j.desal.2015.08.014.10.1016/j.desal.2015.08.014
24. Yu, X., Yang, H., Lei, H. & Shapiro, A. (2013). Experimental evaluation on concentrating cooling tower blowdown water by direct contact membrane distillation, Desalination, 323, 134-141. DOI: 10.1016/j.desal.2013.01.029.10.1016/j.desal.2013.01.029
26. Gryta, M. (2017). Investigations of a membrane distillation pilot plant with a capillary module, Desalination Water Treat.64, 279-286. DOI: 10.5004/dwt.2017.11465.10.5004/dwt.2017.11465
27. Braul, L., Viraraghavan, T. & Corkal, D. (2001). Cold water effects on enhanced coagulation of high DOC, low turbidity water, Water Qual. Res. J. Canada, 36 701-717.10.2166/wqrj.2001.037
29. Gryta, M., Grzechulska-Damszel, J., Markowska, A. & Karakulski, K. (2009). The infl uence of polypropylene degradation on the membrane wettability during membrane distillation, J. Membr. Sci., 326, 493-502. DOI: 10.1016/j.memsci.2008.10.022.10.1016/j.memsci.2008.10.022
30. Gryta, M. (2009). Scaling diminution by heterogeneous crystallization in a fi ltration element integrated with membrane distillation module, Pol. J. Chem. Tech. 11, 60-65. DOI: 10.2478/ v10026-009-0026-x.10.2478/v10026-009-0026-x
33. Loste, E., Seshadri, R.M.W.R. & Meldrum, F.C. (2003). The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies, J. Cryst. Growth, 254, 206-218. DOI: 10.1016/S0022-0248(03)01153-9.10.1016/S0022-0248(03)01153-9