Have a personal or library account? Click to login

Optimization and Evaluation of Alkali-Pretreated Paeonia Ostii Seed Coats as Adsorbent for the Removal of Mb From Aqueous Solution

Open Access
|Oct 2018

References

  1. 1 . Sewu, D.D., Boakye, P. & Woo, S.H. (2017). Highly
  2. efficient adsorption of cationic dye by biochar produced with Korean cabbage waste. J. Bioresour. Technol. 224, 206-213.DOI: 10.1016/j.biortech.2016.11.009.10.1016/j.biortech.2016.11.00927839858
  3. 2 . Daneshvar, E., Vazirzadeh, A., Niazi, A., Sillanpää, M. & Bhatnagar, A. (2017). A comparative study of methylene blue biosorption using different modifi ed brown, red and green macroalgae-Effect of pretreatment. J. Chem. Eng. 307, 435-446. DOI: 10.1016/j.cej.2016.08.093.10.1016/j.cej.2016.08.093
  4. 3. Hethnawi, A., Nassar, N.N., Manasrah, A.D. & Vitale, G. (2017). Polyethylenimine-functionalized pyroxene nanoparticles embedded on Diatomite for adsorptive removal of dye from textile wastewater in a fi xed-bed column. J. Chem. Eng. 320, 389-404. DOI: 10.1016/j.cej.2017.03.057.10.1016/j.cej.2017.03.057
  5. 4. Bhatnagar, A., Sillanpää, M. & Witek-Krowiak, A. (2015). Agricultural waste peels as versatile biomass for water purifi - cation-A review. J. Chem. Eng. 270, 244-271. DOI: 10.1016/j.cej.2015.01.135.10.1016/j.cej.2015.01.135
  6. 5. An astopoulos, I., Karamesouti, M., Mitropoulos, A.C. & Kyzas, G.Z. (2017). A review for coffee adsorbents. J. Mol. Liq. 229, 555-565. DOI: 10.1016/j.molliq.2016.12.096.10.1016/j.molliq.2016.12.096
  7. 6. Ca i, J., He,Y., Yu, X., Banks, S.W., Yang,Y., Zhang, X., Yu, Y., Liu, R. & Bridgwater, A.V. (2017). Review of physicochemical properties and analytical characterization of lignocellulosic biomass. J. Renew. Sust. Energ. Rev. 76, 309-322.DOI: 10.1016/j.rser.2017.03.072.10.1016/j.rser.2017.03.072
  8. 7. Um martyotin, S. & Pechyen, C. (2016). Strategies for development and implementation of bio-based materials as effective renewable resources of energy: A comprehensive review on adsorbent technology. J. Renew. Sust. Energ. Rev. 62, 654-664. DOI: 10.1016/j.rser.2016.04.066.10.1016/j.rser.2016.04.066
  9. 8. Da i, Y., Zhang, D. & Zhang, K. (2016). Nitrobenzene- -adsorption capacity of NaOH-modifi ed spent coffee ground from aqueous solution. J. Taiwan Inst. Chem. Eng. 68, 232-238.DOI: 10.1016/j.jtice.2016.08.042.10.1016/j.jtice.2016.08.042
  10. 9. Me ssaoudi, N.E., Khomri, M.E., Bentahar, S., Dbik, A., Lacherai, A. & Bakiz, B. (2016). Evaluation of performance of chemically treated date stones: Application for the removal of cationic dyes from aqueous solutions. J. Taiwan Inst. Chem. Eng. 67, 244-253. DOI: 10.1016/j.jtice.2016.07.024.10.1016/j.jtice.2016.07.024
  11. 10. Zhang, X.X., Shi, Q.Q., Ji, D., Niu, L.X., Zhang, Y.L. (2017). Determination of the phenolic content, profi le, and antioxidant activity of seeds from nine tree peony (Paeoniasection Mountan DC.) species native to China. Food Res. Int. 97, 141-148. DOI: 10.1016/j.foodres.2017.03018.10.1016/j.foodres.2017.03.018
  12. 11. Ma, L., Cui,Y., Cai, R., Liu, X., Zhang, C. & Xiao, D. (2015). Optimization and evaluation of alkaline potassium permanganate pretreatment of corncob. J. Bioresour. Technol. 180, 1-6. DOI: 10.1016/j.biortech.2014.12.078.10.1016/j.biortech.2014.12.07825585256
  13. 12. S un,Y.G., Ma,Y.L., Wang, L.Q., Wang, F.Z., Wu, Q.Q. & Pan, G.Y. (2015). Physicochemical properties of corn stalk after treatment using steam explosion coupled with acid or alkali. J. Carbohydr. Polym. 117, 486-493. DOI: 10.1016/j. carbpol.2014.09.066.10.1016/j.carbpol.2014.09.06625498662
  14. 13. M ohapatra, S., Dandapat, S.J. & Thatoi, H. (2017). Physicochemical characterization, modelling and optimization of ultrasono-assisted acid pretreatment of two Pennisetum sp. using Taguchi and artifi cial neural networking for enhanced delignifi cation. J. Environ. Manage 187, 537-549. DOI: 10.1016/j.jenvman.2016.09.060.10.1016/j.jenvman.2016.09.06027865731
  15. 14. G andolfi , S., Ottolina, G., Consonni, R., Riva, S. & Patel, I. (2014). Fractionation of hemp hurds by organosolv pretreatmen and its effect on production of lignin and sugars. J. ChemSusChem 7(7), 1991-1999. DOI: 10.1002/cssc.201301396.10.1002/cssc.20130139624753480
  16. 15. Hameed, B.H. & Ahmad, A.A. (2009). Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J. Hazard. Mater. 164(2-3), 870-875. DOI: 10.1016/j.jhazmat.2008.08.084.10.1016/j.jhazmat.2008.08.08418838221
  17. 16. B ulgariu, D. & Bulgariu, L. (2016). Potential use of alkaline treated algae waste biomass as sustainable biosorbent for clean recovery of cadmium(II) from aqueous media: batch and column studies. J. Clean. Prod. 112(5), 4525-4533. DOI: 10.1016/j.jclepro.2015.05.124.10.1016/j.jclepro.2015.05.124
  18. 17. O oi, J., Lee, L.Y., Hiew, B.Y.Z., Thangalazhy-Gopakumar, S., Lim, S.S. & Gan, S. (2017). Assessment of fi sh scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies. J. Bioresour. Technol. 245, 656-664. DOI: 10.1016/j.biortech.2017.08.153.10.1016/j.biortech.2017.08.15328917100
  19. 18. S ayyadi, S., Ahmady-Asbchin, S., Kamali, K. & Tavakoli, N. (2017). Thermodynamic, equilibrium and kinetic studies on biosorption of Pb2+ from aqueous solution by Bacillus pumilus sp. AS1 isolated from soil at abandoned lead mine. J. Taiwan Inst. Chem. Eng. 80, 701-708. DOI: 10.1016/j.jtice.2017.09.005.10.1016/j.jtice.2017.09.005
  20. 19. S arat Chandra, T., Mudliar, S.N., Vidyashankar, S., Mukherji, S., Sarada, R., Krishnamurthi, K. & Chauhan,V.S. (2015). Defatted algal biomass as a non-conventional low-cost adsorbent: Surface characterization and methylene blue adsorption characteristics. J. Bioresour. Technol. 184, 395-404. DOI: 10.1016/j.biortech.2014.10.018.10.1016/j.biortech.2014.10.01825479690
  21. 20. A lbadarin, A.B., Collins, M.N., Naushad, M., Shirazian, S., Walker, G. & Mangwandi, C. (2017). Activated lignin-chitosan extruded blends for effi cient adsorption of methylene blue. J. Chem. Eng. 307, 264-272. DOI: 10.1016/j.cej.2016.08.089.10.1016/j.cej.2016.08.089
  22. 21. Z hang, H., Li, A., Sun, J. & Li, P. (2013). Adsorption of amphoteric aromatic compounds by hyper-cross-linked resins with amino groups and sulfonic groups. J. Chem. Eng. 217, 354-362. DOI: 10.1016/j.cej.2012.12.001.10.1016/j.cej.2012.12.001
  23. 22. K umari, S., Chauhan, G.S. & Ahn, J.H. (2016). Novel cellulose nanowhiskers-based polyurethane foam for rapid and persistent removal of methylene blue from its aqueous solutions. J. Chem. Eng. 304, 728-736. DOI: 10.1016/j.cej.2016.07.008.10.1016/j.cej.2016.07.008
  24. 23. D ai, H., Huang, Y. & Huang, H. (2018). Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. J. Carbohydr. Polym. 185, 1-11. DOI: 10.1016/j. carbpol.2017.12.073.10.1016/j.carbpol.2017.12.07329421044
  25. 24. S aini, J., Garg,V.K. & Gupta, R.K. (2018). Removal of Methylene Blue from aqueous solution by Fe3O4 @Ag/ SiO2 nanospheres: Synthesis, characterization and adsorption performance. J. Mol. Liq. 250, 413-422. DOI: 10.1016/j.molliq. 2017.11.180.10.1016/j.molliq.2017.11.180
  26. 25. C heng, M., Zeng, G., Huang, D., Lai, C., Liu,Y., Zhang, C., Wang, R., Qin, L., Xue,W., Song, B., Ye, S. & Yi, H. (2018). High adsorption of methylene blue by salicylic acid-methanol modified steel converter slag and evaluation of its mechanism. J. coll. Interf. Sci. 515, 232-239. DOI: 10.1016/j.jcis.2018.01.008.10.1016/j.jcis.2018.01.00829353196
  27. 26. G uo, H., Bi, C., Zeng, C., Ma,W., Yan, L., Li, K. & Wei, K. (2018). Camellia oleifera seed shell carbon as an efficient renewable bio-adsorbent for the adsorption removal of hexavalent chromium and methylene blue from aqueous solution. J. Mol. Liq. 249, 629-636. DOI: 10.1016/j.molliq.2017.11.096.10.1016/j.molliq.2017.11.096
  28. 27. E L.-Mekkawi, D.M., Selim, Mohamed M. & Ibrahim, Fatma A. (2018). Innovative synthesis of black zeolites-based kaolin and their adsorption behavior in the removal of methylene blue from water. J. Mater. Sci. 53(5), 3323-3331. DOI: 10.1007/s10853-017-1744-8.10.1007/s10853-017-1744-8
  29. 28. Z hao, Q., Zhu, X. & Chen, B. (2018). Stable graphene oxide/poly(ethyleneimine) 3D aerogel with tunable surface charge for high performance selective removal of ionic dyes from water. J. Chem. Eng. 334, 1119-1127. DOI: 10.1016/j.cej.2017.11.053.10.1016/j.cej.2017.11.053
  30. 29. O lusegun, S.J., de Sousa Lima, L.F. & Mohallem, N.D.S. (2018). Enhancement of adsorption capacity of clay through spray drying and surface modification process for wastewater treatment. J. Chem. Eng. 334, 1719-1728. DOI: 10.1016/j.cej.2017.11.084.10.1016/j.cej.2017.11.084
  31. 30. L i, Z., Wang, G., Zhai, K., He, C., Li, Q. & Guo, P. (2018). Methylene blue adsorption from aqueous solution by loofah sponge-based porous carbons. J. Colloid. Surface. A. 538, 28-35. DOI: 10.1016/j.colsurfa.2017.10.046.10.1016/j.colsurfa.2017.10.046
  32. 31. N asrullah, A., Bhat, A.H., Naeem, A., Isa, M.H. & Danish, M. (2018). High surface area mesoporous activated carbon-alginate beads for effi cient removal of methylene blue. J. Int. Biol. Macromol. 107, 1792-1799. DOI: 10.1016/j.ijbiomac.2017.10.045.10.1016/j.ijbiomac.2017.10.04529032214
  33. 32. H an, R., Zhang, L., Song, C., Zhang, M., Zhu, H. & Zhang, L. (2010). Characterization of modifi ed wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode. J. Carbohydr. Polym. 79(4), 1140-1149. DOI: 10.1016/j.carbpol.2009.10.054.10.1016/j.carbpol.2009.10.054
  34. 33. K onicki, W., Aleksandrzak, M., Moszynski, D. & Mijowska, E. (2017). Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: Equilibrium, kinetic and thermodynamic studies. J. Coll. Interf. Sci. 496, 188-200. DOI: 10.1016/j.jcis.2017.02.031.10.1016/j.jcis.2017.02.03128232292
  35. 34. P atra, S., Roy, E., Madhuri, R. & Sharma, P.K. (2016). Agar based bimetallic nanoparticles as high-performance renewable adsorbent for removal and degradation of cationic organic dyes. J. Ind. Eng. Chem. 33, 226-238. DOI: 10.1016/j.jiec.2015.10.008.10.1016/j.jiec.2015.10.008
  36. 35. E sfandiyari, T., Nasirizadeh, N., Ehrampoosh, M.H. & Tabatabaee, M. (2017). Characterization and absorption studies of cationic dye on multi walled carbon nanotube-carbon ceramic composite. J. Ind. Eng. Chem. 46, 35-43. DOI: 10.1016/j.jiec.2016.09.031.10.1016/j.jiec.2016.09.031
Language: English
Page range: 29 - 36
Published on: Oct 17, 2018
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2018 Qiong Liu, Tao Li, Shaowen Zhang, Lingbo Qu, Baozeng Ren, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.