Have a personal or library account? Click to login

Biosorption of Cu2+ and Ni2+ Ions From Aqueous Solutions Using Waste Dried Activated Sludge Biomass

Open Access
|Oct 2018

References

  1. 1. Pagnanelli, F., Mainelli, S., Bornoroni, L., Dionisi, D. & Toro, L. (2009). Mechanisms of heavy-metal removal by activated sludge. Chemosphere. 75, 1028-1034. DOI: 10.1016/j. chemosphere.2009.01.043.10.1016/j.chemosphere.2009.01.043
  2. 2. Markou, G., Mitrogiannis, D., Çelekli, A., Bozkurt, H., Georgakakis, D. & Chrysikopoulos, C.V. (2015). Biosorption of Cu2+ and Ni2+ by Arthrospira platensis with different biochemical compositions. Chem. Eng. J. 259, 806-813. https://DOI.org/10.1016/j.cej.2014.08.03710.1016/j.cej.2014.08.037
  3. 3. Azouaou, N., Sadaoui, Z., Djaafri, A. & Mokaddem, H. (2010). Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 184(1), 126-134. https://DOI. org/10.1016/j.jhazmat.2010.08.01410.1016/j.jhazmat.2010.08.014
  4. 4. Jai, P.H., Wook, J.S., Kyu, Y.J., Gil, K.B. & Mok, L.S. (2007). Removal of heavy metals using waste eggshell. J. Environ. Sci. 19(12), 1436-1441. http://dx.DOI.org/10.1016/S1001-0742(07)60234-410.1016/S1001-0742(07)60234-4
  5. 5. Aslan, S., Ozturk, M. & Yildiz, S. (2016). Sorption of heavy metals on biosludge. Eur. Sci. J. ESJ, 12(10), ISSN: 1857-7881 (Print), ISSN: 1857-7431 (Online).
  6. 6. Jianlong, W., Yi, Q., Horan, N. & Stentiford, E. (2000). Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass. Bioresour. Technol. 75(2), 157-161. https://DOI.org/10.1016/S0960-8524(00)00041-910.1016/S0960-8524(00)00041-9
  7. 7. Liu, D., Tao, Y., Li, K. & Yu, J. (2012). Infl uence of the presence of three typical surfactants on the adsorption of nickel (II) to aerobic activated sludge. Bioresour. Technol. 126, 56 63.http://dx.DOI.org/10.1016/j.biortech.2012.09.02510.1016/j.biortech.2012.09.02523073089
  8. 8. Pamukoglu, M.Y. & Kargi, F. (2006). Removal of copper (II) ions from aqueous medium by biosorption onto powdered waste sludge. Process Biochem. 41(5), 1047-1054. https://DOI. org/10.1016/j.procbio.2005.11.01010.1016/j.procbio.2005.11.010
  9. 9. Wei, D., Zhang, K., Wang, S., Sun, B., Wu, N., Xu, W., Du, B. & Wei, Q. (2017). Characterization of dissolved organic matter released from activated sludge and aerobic granular sludge biosorption processes for heavy metal treatment via a fl uorescence approach. Int. Biodeterior. Biodegrad. 124, 2017.326-333. https://DOI.org/10.1016/j.ibiod.2017.03.01810.1016/j.ibiod.2017.03.018
  10. 10. Yuncu, B., Sanin, F.D. &Yetis, U. (2006). An investigation of heavy metal biosorption in relation to C/N ratio of activated sludge. J. Hazard. Mater. 137(2), 990-997. https:// DOI.org/10.1016/j.jhazmat.2006.03.02010.1016/j.jhazmat.2006.03.02016713077
  11. 11. Zhou, Y., Zhang, Z., Zhang, J. & Xia, S. (2016). New insight into adsorption characteristics and mechanisms of the biosorbent from waste activated sludge for heavy metals. J. Environ Sci., 45, 248-256. https://DOI.org/10.1016/j.jes.2016.03.00710.1016/j.jes.2016.03.00727372140
  12. 12. Filipkowska, U. & Kuczajowska-Zadrożna, M. (2016). Investigation of the adsorption/desorption equilibria of Cd (II), Zn (II) and Cu (II) ions on/from immobilized digested sludge using biosurfactants. Environ. Earth Sci. 75(9), 814. DOI: 10.1007/s12665-016-5674-6.10.1007/s12665-016-5674-6
  13. 13. Weng, C.H., Chang, E.E. & Chiang, P.C. (2001). Characteristics of new coccine dye adsorption onto digested sludge particulates. Water Sci. Technol. 44(10), 279-284.10.2166/wst.2001.0641
  14. 14. Cojocaru, C., Diaconu, M., Cretescu, I., Savić, J. & Vasić, V. (2009). Biosorption of copper (II) ions from aqua solutions using dried yeast biomass. Colloids Surf. A: Physicochemical and Engineering Aspects, 335(1), 181-188. https://DOI.org/10.1016/j. colsurfa.2008.11.00310.1016/j.colsurfa.2008.11.003
  15. 15. Kumar, R. Bishnoi, N.R. & Bishnoi, K. (2008). Biosorption of chromium (VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem. Eng. J. 135(3), 202-208.https://DOI.org/10.1016/j.cej.2007.03.00410.1016/j.cej.2007.03.004
  16. 16. Tunali, Y., Karaca, H., Tay, T., Kivanç, M. & Bayramoglu, G. (2009). Biosorption of Pb (II) from aqueous solutions by a fungal biomass in a batch system: Equilibrium and kinetic studies, Asian J. Chem. 21(8), 6015.
  17. 17. Zhang, Q., Hu, J., Lee, D.J., Chang, Y. & Lee, Y.J. (2017). Sludge treatment: Current research trends, Bioresour. Technol. 243, 1159-1172, http://dx.DOI.org/10.1016/j.biortech.2017.07.07010.1016/j.biortech.2017.07.070
  18. 18. Alexandre, V.M.F., Castro, T.M.S., Araújo, L.V., Santiago, V.M.J., Freire, D.M.G. & Cammarota, M.C. (2015). Minimizing solid wastes in an activated sludge system treating oil refi nery wastewater. Chem. Eng. Process. http://dx.DOI.org/10.1016/j.cep.2015.10.021.10.1016/j.cep.2015.10.021
  19. 19. Li, C. & Ju, L.K. (2018). Enhancement of resource recovery and sludge digestion by cultivation of phagotrophic algae with alkali-pretreated waste activated sludge and waste ketchup. Process Saf. Environ. Prot.113 233-241. https://DOI.org/10.1016/j.psep.2017.10.00410.1016/j.psep.2017.10.004
  20. 20. Abdelfattah, I., Ismail, A.A., Sayed. F.A., Almedolab. A. & Aboelghait, K.M. (2016). Biosorption of heavy metals ions in real industrial wastewater using peanut husk as effi cient and cost effective adsorbent. Environ. Nanotechnol. Monit. Man. 6: 176-183. http://dx.DOI.org/10.1016/j.enmm.2016.10.00710.1016/j.enmm.2016.10.007
  21. 21. Nuhoglu, Y. & Oguz, E. (2003). Removal of copper(II) from aqueous solutions by biosorption on the cone biomass of Thuja orientalis. Prosess Biochem. 38, 1627-1631. DOI: 10.1016/S0032-9592(03)00055-4.10.1016/S0032-9592(03)00055-4
  22. 22. Hammaini, A., Gonzalez, F., Ballester, A., Blazquez, M.L. & Munoz, J.A. (2007). Biosorption of heavy metals by activated sludge and their desorption characteristics. J. Environ. Manage.84, 419-426. DOI: 10.1016/j.jenvman.2006.06.015.10.1016/j.jenvman.2006.06.01516979281
  23. 23. Kargi, F. & Cikla, S. (2006). Biosorption of zinc(II) ions onto powdered waste sludge (PWS): Kinetics and isotherms. Enzyme Microb. Technol. 38, 705-710. DOI: 10.1016/j.enzmictec.2005.11.00510.1016/j.enzmictec.2005.11.005
  24. 24. Laurent, J., Casellas, M., Pons, M.N. & Dagot, C. (2010). Cadmium biosorption by ozonized activated sludge: The role of bacterial fl ocs surface properties and mixed liquor composition. J. Hazard. Mater. 183, 256-263. DOI: 10.1016/j. jhazmat.2010.07.019.10.1016/j.jhazmat.2010.07.019
  25. 25. Ong, S.A., Toorisaka, E., Hirata, M. & Hano, T. (2013). Comparative study on kinetic adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions using activated sludge and dried sludge. App. Water Sci. 3, 321-325. DOI: 10.1007/s13201-013-0084-3.10.1007/s13201-013-0084-3
  26. 26. Rao, P.R. & Bhargavi, C. (2013). Studies on biosorption of heavy metals using pretreated biomass of fungal species. Int. J. Chem. Chem. Eng. 3(3), 171-180, ISSN 2248-9924.
  27. 27. Yang, C., Wang, J., Lei, M., Xie, G., Zeng, G. & Luo, S. (2010). Biosorption of zinc (II) from aqueous solution by dried activated sludge. J. Environ. Sci. 22(5), 675-680. https://DOI.org/10.1016/S1001-0742(09)60162-510.1016/S1001-0742(09)60162-5
  28. 28. Goodwin, J.A.S. & Forster, C.F. (19859. A further examination into the composition of activated sludge surfaces in relation to their settlement characteristics. Water Res. 19(4), 527-533. https://DOI.org/10.1016/0043-1354(85)90045-410.1016/0043-1354(85)90045-4
  29. 29. Horan, N.J. & Eccles, C.R. (1986). Purifi cation and characterization of extracellular polysaccharide from activated sludges. Water Res. 20(11), 1427-1432. https://DOI.org/10.1016/0043-1354(86)90142-910.1016/0043-1354(86)90142-9
  30. 30. Chang, D., Fukushi, K. & Ghosh, S. (1995). Stimulation of activated sludge cultures for enhanced heavy metal removal. Water Environ. Res. 67(5), 822-827. https://DOI.org/10.2175/106143095X13174510.2175/106143095X131745
  31. 31. Durmaz, B. & Sanin, F.D. 2001. Effect of carbon to nitrogen ratio on the composition of microbial extracellular polymers in activated sludge. Water Sci. Technol. 44(10), 221-229.10.2166/wst.2001.0626
  32. 32. APHA, AWWA, WPCF (1995) Standard Methods for the Examination of water and wastewater, 19th ed. American Public Health Association/American Water Works Association/ Water Environment Federation, Washington DC, USA.
  33. 33. Jamshidi, M., Jamshidi, A. & Mehrdadi, N. (2012). Application of sewage dry sludge in concrete mixtures. Asian J. Civil Eng (building and housing), 13(3), 365-375.
  34. 34. Mojapelo, S.K. (2017). Characterisation of wastewater dry sludge for lightweight concrete application, Faculty of Engineering and The Built Environment, Tshwane University of Technology, Master Thesis, 107 p.
  35. 35. Mun, K.J. (2007). Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete. Construct. Built. Mater. 21(7), 1583-1588. https://DOI.org/10.1016/j. conbuildmat.2005.09.00910.1016/j.conbuildmat.2005.09.009
  36. 36. Ata, A., Nalcaci, O.O. & Ovez, B. (2012). Macro algae Gracilaria verrucosa as a biosorbent: A study of sorption mechanisms. Algal Res. 1(2), 194-204. https://DOI.org/10.1016/j. algal.2012.07.001.10.1016/j.algal.2012.07.001
  37. 37. Chen, H., Dou, J. & Xu, H. (2017). Removal of Cr (VI) ions by sewage sludge compost biomass from aqueous solutions: Reduction to Cr (III) and biosorption. Appl. Surf. Sci. 425, 728-735. http://dx.DOI.org/10.1016/j.apsusc.2017.07.05310.1016/j.apsusc.2017.07.053
  38. 38. Rocha, C.G., Zaia, D.A.M., da Silva Alfaya, R.V. & da Silva Alfaya, A.A. (2009). Use of rice straw as biosorbent for removal of Cu (II), Zn (II), Cd (II) and Hg (II) ions in industrial effl uents. J. Hazard. Mater. 166(1), 383-388. https://DOI.org/10.1016/j.jhazmat.2008.11.07410.1016/j.jhazmat.2008.11.074
  39. 39. Nouha, K., Hoang, N.V. & Tyagi, R.D. (2016). Fourier transform infrared spectroscopy and liquid chromatography- mass spectrometry study of extracellular polymer substances produced on secondary sludge fortifi ed with crude glycerol. J. Mater. Sci. Eng. 5:3. http://dx.DOI.org/10.4172/2169-0022.100024010.4172/2169-0022.1000240
  40. 40. Yahaya, Y.A., Don, M.M. & Bhatia, S. (2009). Biosorption of copper (II) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: Equilibrium and kinetic studies. J. Hazard. Mater. 161(1), 189-195. https://DOI.org/10.1016/j.jhazmat.2008.03.10410.1016/j.jhazmat.2008.03.104
  41. 41. Badireddy, A.R., Chellam, S., Gassman, P.L., Engelhard, M.H., Lea, A.S. & Rosso, K.M. (2010). Role of extracellular polymeric substances in biofl occulation of activated sludge microorganisms under glucose-controlled conditions. Wa ter Res. 44(15), 4505-4516. https://DOI.org/10.1016/j.watres. 2010.06.02410.1016/j.watres.2010.06.024
  42. 42. Yin, C., Meng, F. & Chen, G.H. (2015). Spectroscopic characterization of extracellular polymeric substances from a mixed culture dominated by ammonia-oxidizing bacteria. Water Res. 68, 740-749. http://dx.DOI.org/10.1016/j.watres.2014.10.04610.1016/j.watres.2014.10.046
  43. 43. Chassary, P., Vincent, T. & Guibal, E. (2004). Metal anion sorption on chitosan and derivative materials: a strategy for polymer modifi cation and optimum use. React. Funct. Polym. 60, 137-149. https://DOI.org/10.1016/j.reactfunctpolym.2004.02.01810.1016/j.reactfunctpolym.2004.02.018
  44. 44. Guzman, J., Saucedo, I., Revilla, J., Navarro, R. & Guibal, E. (2003). Copper sorption by chitosan in the presence of citrate ions: infl uence of metal speciation on sorption mechanism and uptake capacities. Int. J. Biol. Macromolecules. 33(1), 57-65.https://DOI.org/10.1016/S0141-8130(03)00067-910.1016/S0141-8130(03)00067-9
  45. 45. Bermúdez, Y.G., Rico, I.L.R., Bermúdez, O.G. & Guibal, E. (2011). Nickel biosorption using Gracilaria caudata and Sargassum muticum. Chem. Eng. J. 66, 122-131. http://dx.DOI.org/10.1016/j.cej.2010.10.038.10.1016/j.cej.2010.10.038
  46. 46. Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K.J. & Tchobanoglous, G. (2005). Water Treatment: Priciples and Design, 2nd Edition, John Wiley and Son, Inc. 1947p.
  47. 47. Aslan, S. & Topcu, U.S. (2015). Adsorption of nickel and copper from water by waste nitrifi cation organisms, ISITES2015- -3rd International Symposium on Innovative Technologies in Engineering and Science, pp: 1955-1963, Valencia, Spain, 2015.
  48. 48. Katal, R., Baei, M.S., Rahmati, H.T. & Esfendian, H. (2012). Kinetic, isotherm, and thermodynamic study of nitrate adsorption from aqueous solution using modifi ed rice husk. J. Industrial Chem. 18, 295-302. http://dx.DOI.org/10.1016/j.jiec.2011.11.03510.1016/j.jiec.2011.11.035
  49. 49. Demirbas, E., Dizge, N., Sulak, M.T. & Kobya, M. (2009). Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chem. Eng. J. 148(2), 480-487. https://DOI.org/10.1016/j.cej.2008.09.02710.1016/j.cej.2008.09.027
  50. 50. Aslan, S., Polat, A. & Topcu, U.S. (2015), Assessment of the adsorption kinetics, equilibrium and thermodynamics for the potential removal of Ni2+ from aqueous solution using waste eggshell. Journal of Environmental Engineering and Landscape Management, 23:3, 221-229, DOI: 10.3846/16486897.2015.1005015.10.3846/16486897.2015.1005015
  51. 50. Kilic, M., Varol, E.A. & Putun, A.E. (2011). Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 189, 397-403. http://dx.DOI.org/10.1016/j.jhazmat.2011.02.05110.1016/j.jhazmat.2011.02.05121420235
  52. 52. Sljivic, M., Smiciklas, I., Plecas, I. & Mitric, M. (2009). The infl uence of equilibration conditions and hydroxyapatite physico-chemical properties onto retention of Cu2+ ion. Chem. Eng. J. 148, 80-88. http://dx.DOI.org/10.1016/j.cej.2008.08.00310.1016/j.cej.2008.08.003
  53. 53. Ghasemi, Z., Seif, A., Ahmadi, T.S., Zargar, B., Rashidi, F. & Rouzbahani, G.M. (2012). Thermodynamic and kinetic studies for the adsorption of Hg (II) by nano-TiO2 from aqueous solution. Adv. Powder Technol. 23(2), 148-156. https://DOI.org/10.1016/j.apt.2011.01.00410.1016/j.apt.2011.01.004
  54. 54. Rahchamani, J., Mousavi, H.Z. & Behzad, M. (2011). Adsorption of methyl violet from aqueous solution by polyacrylamide as an adsorbent: Isotherm and kinetic studies. Desalination, 267(2), 256-260. https://DOI.org/10.1016/j.10.1016/j
  55. desal.2010.09.03610.1088/1475-7516/2010/11/036
  56. 55. Doğan, M., Ozdemir, Y. & Alkan, M. (2007). Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes Pig. 75(3), 701-713. https://DOI. org/10.1016/j.dyepig.2006.07.02310.1016/j.dyepig.2006.07.023
  57. 56. Mezenner, N.Y. & Bensmaili, A. (2009). Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide- eggshell waste. Chem. Eng. J. 147(2), 87-96. https://DOI. org/10.1016/j.cej.2008.06.02410.1016/j.cej.2008.06.024
  58. 57. Ahmad, R., Kumar, R. & Haseeb, S. (2012). Adsorption of Cu2+ from aqueous solution onto iron oxide coated eggshell powder: Evaluation of equilibrium, isotherms, kinetics, and regeneration capacity. Arabian J. Chem. 5, 353-359. https://DOI.org/10.1016/j.arabjc.2010.09.00310.1016/j.arabjc.2010.09.003
  59. 58. Chairat, M., Rattanaphani, S., Bremner, J.B. & Rattanaphani, V. (2005). An adsorption and kinetic study of lac dyeing on silk. Dyes Pig. 64, 231-241. http://dx.DOI.org/10.1016/j.dyepig.2004.06. 09.10.1016/j.dyepig.2004.06.09
  60. 59. Ayoob, S., Gupta, A.K., Bhakat, P.B. & Bhat, V.T. (2008). Investigations on the kinetics and mechanisms of sorptive removal of fl uoride from water using alumina cement granules. Chem.Eng. J. 140(1), 6-14. https://DOI.org/10.1016/j.cej.2007.08.02910.1016/j.cej.2007.08.029
  61. 60. Coman, V., Robotin, B. & Ilea, P. (2013). Nickel recovery/ removal from industrial wastes: A review. Resour. Conserve. Recycle. 73, 229-238. https://DOI.org/10.1016/j. resconrec.2013.01.01910.1016/j.resconrec.2013.01.019
  62. 61. Wardani, A.K., Hakim, A.N., Khoiruddin, Destifen, W., Goenawan, A. & Wenten, I.G. (2017). Study on the infl uence of applied voltage and feed concentration on the performance of electrodeionization in nickel recovery from electroplating wastewater, Proceedings of the 1st International Process Metallurgy Conference (IPMC 2016) AIP Conf. Proc. 1805. DOI: 10.1063/1.4974415.10.1063/1.4974415
  63. 62. Davidson, J. (2010). Removal of nickel (II) from aqueous solutions by polymer-enhanced ultrafi ltration, A major qualifying project submitted to the faculty of Worcester Polytechnic Institute in partial fulfi llment of the requirements for the Bachelor of Science Degree, Shanghai, China Project Center 73 p.
  64. 63. Dhokpande, S. & Kaware, J. (2016). Regeneration and recovery of nickel-a review. Int. J. Sci. Eng. App. Sci. (IJSEAS)- 2, 7, ISSN: 2395-3470.
  65. 64. Ramamurthi, V., Priya, P.G., Saranya, S. & Basha, C.A. (2009). Recovery of nickel (II) ions from electroplating rinse water using hectorite clay. Modern App. Sci. 3(9), 37. http:// dx.DOI.org/10.5539/mas.v3n9p3710.5539/mas.v3n9p37
  66. 65. Deng, L., Su, Y., Su, H., Wang, X. & Zhu, X. (2007). Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J. Hazard. Mater. 143 2007. 220-225. https://DOI.org/10.1016/j.jhazmat.2006.09.00910.1016/j.jhazmat.2006.09.00917049733
  67. 66. Gupta, V.K. & Rastogi, A. (2008). Sorption and desorption studies of chromium (VI) from nonviable cyanobacterium Nostoc muscorum biomass. J. Hazard. Mater. 154(1), 347-354. https://DOI.org/10.1016/j.jhazmat.2007.10.03210.1016/j.jhazmat.2007.10.03218053641
Language: English
Page range: 20 - 28
Published on: Oct 17, 2018
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2018 Sukru Aslan, Sayiter Yildiz, Mustafa Ozturk, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.