Have a personal or library account? Click to login

H2 and Syngas Production From Catalytic Cracking of Pig Manure and Compost Pyrolysis Vapor Over Ni-Based Catalysts

Open Access
|Oct 2018

References

  1. 1. Huang, G., Han, L., Yang, Z. & Wang, X. (2008). Evaluation of the nutrient metal content in Chinese animal manure compost using near infrared spectroscopy (NIRS). Bioresour. Technol. 99, 8164-8169. DOI: 10.1016/j.biortech.2008.03.025.10.1016/j.biortech.2008.03.025
  2. 2. Kim, M., Li, D., Choi, O., Sang, B.I., Chiang, P.C. & Kim, H. (2017). Effects of supplement additives on anaerobic biogas production. Korean J. Chem. Eng. 34, 2678-2685. DOI: 10.1007/s11814-017-0175-1.10.1007/s11814-017-0175-1
  3. 3. Cao, J.P., Huang, X., Zhao, X.Y., Wei, X.Y. & Takarada, T. (2015). Nitrogen transformation during gasifi cation of livestock compost over transition metal and Ca-based catalysts. Fuel 140, 477-483. DOI: 10.1016/j.fuel.2014.10.008.10.1016/j.fuel.2014.10.008
  4. 4. Sweeten, J.M., Annamalai, K., Thien, B. & McDonald, L.A. (2003). Co-fi ring of coal and cattle feedlot biomass (FB) fuels. Part I. Feedlot biomass (cattle manure) fuel quality and characteristics. Fuel 82, 1167-1182. DOI: 10.1016/S0016-2361(03)00007-3.10.1016/S0016-2361(03)00007-3
  5. 5. Li, L. & Takarada, T. (2013). Conversion of nitrogen compounds and tars obtained from pre-composted pig manure pyrolysis, over nickel loaded brown coal char. Biomass Bioenerg. 56, 456-463. DOI: 10.1016/j.biombioe.2013.05.028.10.1016/j.biombioe.2013.05.028
  6. 6. Ro, K.S., Cantrell, K., Elliott, D. & Hunt, P.G. (2007). Catalytic wet gasifi cation of municipal and animal wastes. Ind. Eng. Chem. Res. 46, 8839-8845. DOI: 10.1021/ie061403w.10.1021/ie061403w
  7. 7. Liu, T.L., Cao, J.P., Zhao, X.Y., Wang, J.X., Ren, X.Y., Fan, X., Zhao, Y.P. & Wei, X.Y. (2017). In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst. Fuel Process. Technol. 160, 19-26. DOI: 10.1016/j. fuproc.2017.02.012.10.1016/j.fuproc.2017.02.012
  8. 8. Huang, X., Cao, J.P., Zhao, X.Y., Wang, J.X., Fan, X., Zhao, Y.P. & Wei, X.Y. (2016). Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel 169, 93-98. DOI: 10.1016/j.fuel.2015.12.011.10.1016/j.fuel.2015.12.011
  9. 9. Essandoh, M., Kunwar, B., Pittman, C.U., Mohan, D. & Mlsna, T. (2015). Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem. Eng. J. 265, 219-227. DOI: 10.1016/j.cej.2014.12.006.10.1016/j.cej.2014.12.006
  10. 10. Wang, J.X., Cao, J.P., Zhao, X.Y., Liu, T.L., Wei, F., Fan, X., Zhao, Y.P. & Wei, X.Y. (2017). Study on pine sawdust pyrolysis behavior by fast pyrolysis under inert and reductive atmospheres. J. Anal. Appl. Pyrol. 125, 279-288. DOI: 10.1016/j.jaap.2017.03.015.10.1016/j.jaap.2017.03.015
  11. 11. Xu, G., Murakami, T., Suda, T., Matsuzaw, Y. & Tani, H. (2009). Two-stage dual fl uidized bed gasifi cation: Its conception and application to biomass. Fuel Process. Technol. 90, 137-144.DOI: 10.1016/j.fuproc.2008.08.007.10.1016/j.fuproc.2008.08.007
  12. 12. Ren, J., Cao, J.P., Zhao, X.Y., Wei, F., Liu, T.L., Fan, X., Zhao, Y.P. & Wei, X.Y. (2017). Preparation of high-dispersion Ni/C catalyst using modifi ed lignite as carbon precursor for catalytic reforming of biomass volatiles. Fuel 202, 345-351.DOI: 10.1016/j.fuel.2017.04.060.10.1016/j.fuel.2017.04.060
  13. 13. Ji, P.J., Feng, W. & Chen, B.H. (2009). Comprehensive simulation of an intensifi ed process for H2 production from steam gasifi cation of biomass. Ind. Eng. Chem. Res. 48, 3909-3920. DOI: 10.1021/ie801191g.10.1021/ie801191g
  14. 14. Porada, S., Rozwadowski, A. & Zubek, K. Studies of catalytic coal gasifi cation with steam. Pol. J. Chem. Technol. 18, 97-102. DOI: 10.1515/pjct-2016-0054.10.1515/pjct-2016-0054
  15. 15. Ashok, J. & Kawi, S. (2014). Nickel-iron alloy supported over iron-alumina catalysts for steam reforming of biomass tar model compound. ACS Catal. 4, 289-301. DOI: 10.1021/cs400621p.10.1021/cs400621p
  16. 16. Karnjanakom, S., Guana, G.Q., Asep, B., Dua, X., Hao, X.G., Samart, C. & Abudula, A. (2015). Catalytic steam reforming of tar derived from steam gasifi cation of sunfl ower stalk over ethylene glycol assisting prepared Ni/MCM-41. Energy Convers. Manage. 98, 359-368. DOI: 10.1016/j.enconman.2015.04.007.10.1016/j.enconman.2015.04.007
  17. 17. Li, S., Zhu, C., Guo, S.M. & Guo, L.J. (2015). A dispersed rutile-TiO2-supported Ni nanoparticle for enhanced gas production from catalytic hydrothermal gasifi cation of glucose. RSC Adv. 5, 81905-81914. DOI: 10.1016/j.enconman.2015.04.007.10.1016/j.enconman.2015.04.007
  18. 18. Zhao, X.Y., Ren, J., Cao, J.P., Wei, F., Zhu, C., Fan, X., Zhao, Y.P. & Wei, X.Y. (2017). Catalytic reforming of volatiles from biomass pyrolysis for hydrogen-rich gas production over limonite ore. Energy Fuels 31, 4054-4060. DOI: 10.1021/acs.energyfuels.7b00005.10.1021/acs.energyfuels.7b00005
  19. 19. Wang, J., Xiao, B., Liu, S., Hu, Z., He, P., Guo, D., Hu, M., Qi, F. & Luo, S. (2013). Catalytic steam gasifi cation of pig compost for hydrogen-rich gas production in a fi xed bed reactor. Bioresour. Technol. 133, 127-133. DOI: 10.1016/j. biortech.2013.01.092.10.1016/j.biortech.2013.01.092
  20. 20. Cao, J.P., Shi, P., Zhao, X.Y., Wei, X.Y. & Takarada, T. (2014). Decomposition of NOx precursors during gasifi cation of wet and dried pig manures and their composts over Ni-based catalysts. Energy Fuels 28, 2041-2046. DOI: 10.1021/ef5001216.10.1021/ef5001216
  21. 21. Wang, B.S., Cao, J.P., Zhao, X.Y., Bian, Y., Song, C., Zhao, Y. P., Fan, X., Wei, X.Y. & Takarada, T. (2015). Preparation of nickel-loaded on lignite char for catalytic gasifi cation of biomass. Fuel Process. Technol. 136, 17-24. DOI: 10.1016/j.fuproc.2014.07.024.10.1016/j.fuproc.2014.07.024
  22. 22. Li, L., Morishita, K., Mogi, H., Yamasaki, K. & Takarada, T. (2010). Low-temperature gasifi cation of a woody biomass under a nickel-loaded brown coal char. Fuel Process. Technol. 91, 889-894. DOI: 10.1016/j.fuproc.2009.08.003.10.1016/j.fuproc.2009.08.003
  23. 23. Kahdum, B.J., Lafta, A. J. & Johdh, A.M. (2017). Enhancement photocatalytic activity of spinel oxide (Co, Ni)3O4 by combination with carbon nanotubes. Pol. J. Chem. Technol. 19, 61-67. DOI: 10.1515/pjct-2017-0050.10.1515/pjct-2017-0050
  24. 24. Ren, J., Cao, J.P., Zhao, X.Y., Wei, F., Zhu, C. & Wei, X.Y. (2017). Extending catalyst lifetime by doping of Ce in Ni loaded on acid-washed lignite char for biomass catalytic gasifi cation. Catal. Sci.Technol. 7, 5741-5749. DOI: 10.1039/C7CY01670K.10.1039/C7CY01670
  25. 25. Zeng, Y., Ma H.F., Zhang, H.T., Ying, W.Y. & Fang, D.Y. (2014). Impact of heating rate and solvent on Ni-based catalysts prepared by solution combustion method for syngas methanation. Pol. J. Chem. Technol. 16, 95-100. DOI: 10.2478/pjct-2014-0076.10.2478/pjct-2014-0076
  26. 26. Cao, J.P., Ren, J., Zhao, X.Y., Wei, X.Y. & Takarada, T. (2018). Effect of atmosphere on carbon deposition of Ni/Al2O3 and Ni-loaded on lignite char during reforming of toluene as a biomass tar model compound. Fuel, 217, 515-521. DOI: 10.1016/j.fuel.2017.12.121.10.1016/j.fuel.2017.12.121
  27. 27. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguezreinoso, F., Rouquerol, J. & S.W. Sing, K. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 25-25. DOI: 10.1515/pac-2014-1117.10.1515/pac-2014-1117
  28. 28. Donald, J., Xu, C., Hashimoto, H., Byambajav, E. & Ohtsuka, Y. (2010). Novel carbon-based Ni/Fe catalysts derived from peat for hot gas ammonia decomposition in an inert helium atmosphere. Appl. Catal. A Gen. 375, 124-133. DOI: 10.1016/j.apcata.2009.12.030.10.1016/j.apcata.2009.12.030
  29. 29. Xua, C.C., Donald, J., Byambajav, E. & Ohtsuka, Y. (2010). Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasifi cation. Fuel 89, 1784-1795. DOI: 10.1016/j.apcata.2009.12.030.10.1016/j.apcata.2009.12.030
  30. 30. Sehested, J. (2006). Four challenges for nickel steamreforming catalysts. Catal. Today 111, 103-110. DOI: 10.1016/j. cattod.2005.10.002.10.1016/j.cattod.2005.10.002
  31. 31. Wu, C. & Williams, P.T. (2009). Hydrogen production by steam gasifi cation of polypropylene with various nickel catalysts. Appl. Catal. B Environ. 87, 152-161. DOI: 10.1016/j. apcatb.2008.09.003.10.1016/j.apcatb.2008.09.003
  32. 32. Alipour, Z., Rezaei, M. & Meshkani, F. (2014). Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activit and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. J. Ind. Eng. Chem.20, 2858-2863. DOI: 10.1016/j.jiec.2013.11.018.10.1016/j.jiec.2013.11.018
  33. 33. Liu, J.J., Peng, H.G., Liu, W.M., Xu, X.L., Wang, X., Li, C.Q., Zhou, W.F., Yuan, P., Chen, X.H., Zhang, W.G. & Zhan, H.B. (2014). Tin modifi cation on Ni/Al2O3: designing potent coke-resistant catalysts for the dry reforming of methane. ChemCatChem. 6, 2095-2104. DOI: 10.1002/cctc.201402091.10.1002/cctc.201402091
  34. 34. Cao, J.P., Huang, X., Zhao, X.Y., Wang, B.S., Meesuk, S., Sato, K., Wei, X.Y. & Takarada, T. (2014). Low-temperature catalytic gasifi cation of sewage sludge-derived volatiles to produce clean H2-rich syngas over a nickel loaded on lignite char. Int. J. Hydrogen Energ. 39, 9193-9199. DOI: 10.1016/j. ijhydene.2014.03.222.10.1016/j.ijhydene.2014.03.222
  35. 35. Shen, Y., Chen, M., Sun, T. & Jia, J. (2015). Catalytic reforming of pyrolysis tar over metallic nickel nanoparticles embedded in pyrochar. Fuel 159, 570-579. DOI: 10.1016/j. fuel.2015.07.007.10.1016/j.fuel.2015.07.007
  36. 36. Tomita, A., Watanabe, Y., Takarada, T., Ohtsuka, Y. & Tamai, Y. (1985). Nickel-catalysed gasifi cation of brown coal in a fl uidized bed reactor at atmospheric pressure. Fuel 64, 795-800. DOI: 10.1016/0016-2361(85)90012-2.10.1016/0016-2361(85)90012-2
  37. 37. Martins, O. (1992). Loss of nitrogen compounds during composting of animal wastes. Bioresour. Technol. 42, 103-111. DOI: 10.1016/j.biortech.2008.11.027.10.1016/j.biortech.2008.11.027
  38. 38. Bernal, M.P., Alburquerque, J.A. & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 100, 5444-5453. DOI: 10.1016/j.biortech.2008.11.027.10.1016/j.biortech.2008.11.027
Language: English
Page range: 8 - 14
Published on: Oct 17, 2018
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2018 Wei Li, Jie Ren, Xiao-Yan Zhao, Takayuki Takarada, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.