Have a personal or library account? Click to login
Carbon nanotubes with controlled length – preparation, characterization and their cytocompatibility effects Cover

Carbon nanotubes with controlled length – preparation, characterization and their cytocompatibility effects

Open Access
|Jul 2018

References

  1. 1. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58. DOI: 10.1038/354056a0.10.1038/354056a0
  2. 2. Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G. & Alexander, A. (2006). Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci. 92, 5–22. DOI: 10.1093/toxsci/kfj130.10.1093/toxsci/kfj130
  3. 3. Chen, X., Chen, H., Tripisciano, C., Jedrzejewska, A., Rümmeli, H.M., Klingeler, R., Chu, P.K. & Borowiak-Palen, E. (2011). Carbon-nanotube-based stimuli-responsive controlled-release system. Chem. Eur. J. 17, 4454–4459. DOI: 10.1002/chem.201003355.10.1002/chem.201003355
  4. 4. Kumar, A.P., Hul, Y., Yamamoto, Y., Hoe, N.B., Wie, T.S., Mu, D., Sun, Y., Joo, L.S., Dagher, R., Zielonka, L.M., Wang, D.Y., Lim, B., Chow, V. T., Crum, C. P., Xian, W. & McKeon, F. (2011). Distal airway s tem cells yield alveoli in v itro a nd during lung regeneration following H1N1 influenza infection. Cell, 147, 525–538. DOI: 10.1016/j.cell.2011.10.001.10.1016/j.cell.2011.10.001
  5. 5. Meng, L., Zhang, X., Lu, Q., Fei, Z. & Dyson, P.J. (2012). Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials, 33, 1689–1698. DOI: 10.1016/j.biomaterials.2011.11.004.10.1016/j.biomaterials.2011.11.004
  6. 6. Lacerda, L., Bianco, A., Prato, M. & Kostarelos, K. (2006). Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Delivery Rev. 58, 1460–1470. DOI: 10.1016/j.addr.2006.09.015.10.1016/j.addr.2006.09.015
  7. 7. Lam, C.W., James, J.T., McCluskey, R., Arepalli, S. & Hunter, R.L. (2006). A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Rev. Toxicol. 36, 189–217. DOI: 10.1080/10408440600570233.10.1080/10408440600570233
  8. 8. Markovic, M.Z., Harhaji-Trajkovic, L.M., Todorovic--Markovic, B.M., Kepić, D.P., Arsikin, K.M., Jovanović, S.P., Pantovic, A.C., Dramićanin, M.D. & Trajkovic, V.S. (2011). In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials, 32, 1121–1129. DOI: 10.1016/j.biomaterials.2010.10.030.10.1016/j.biomaterials.2010.10.030
  9. 9. Sahithi, K., Swetha, M., Ramasamy, K., Srinivasan, N. & Selvamurugan, N. (2010). Polymeric composites containing carbon nanotubes for bone tissue engineering. Int. J. Biol. Macromol. 46, 281–283. DOI: 10.1016/j.ijbiomac.2010.01.006.10.1016/j.ijbiomac.2010.01.006
  10. 10. Elgrabli, D., Abella-Gallart, S., Robidel, F., Rogerieux, F., Boczkowski, J. & Lacroix, G. (2008). Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes. Toxicology, 253, 131–136. DOI: 10.1016/j.tox.2008.09.004.10.1016/j.tox.2008.09.004
  11. 11. De Nicola, M., Gattia, D.M., Bellucci, S., Bellis, G.D., Micciulla, F., Pastore, R., Tiberia, A., Cerella, C., D’Alessio, M., Antisari, M.V., Marazzi, R., Traversa, E., Magrini, A., Bergamaschi, A. & Ghibelli, L. (2007). Effect of different carbon nanotubes on cell viability and proliferation. J. Phys: Condens. Matter. 19, 395013–395020. DOI: 10.1088/0953-8984/19/39/395013.10.1088/0953-8984/19/39/395013
  12. 12. Cui, D., Tian, F.C.S., Wang, M. & Gao, H. (2005). Effect of single-wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 155, 73–85. DOI: 10.1016/j.toxlet.2004.08.015.10.1016/j.toxlet.2004.08.015
  13. 13. Suh, W.H., Suslick, K.S., Stucky, G.D. & Suh, Y.H. (2009). Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol. 87, 133–170. DOI: 10.1016/j.pneurobio.2008.09.009.10.1016/j.pneurobio.2008.09.009
  14. 14. Wang, X., Podila, R., Shannahan, J.H., Rao, A.M. & Brown, J.M. (2011). Intravenously delivered graphene nano-sheets and multiwalled carbon nanotubes induce site-specific Th2 inflammatory responses via the IL-33/ST2 axis. Chem. Res. Toxicol. 24, 2028–2039. DOI: 10.2147/IJN.S44211.10.2147/IJN.S44211
  15. 15. Bekyarova, E., Haddon, R.C. & Parpura, V. (2007). Biofunctionalization of carbon nanotubes. NTLS. DOI:10.1002/9783527610419.ntls0002.10.1002/9783527610419.ntls0002
  16. 16. Kagan, V.E., Konduru, N.V., Feng, W., Allen, B.L., Conroy, J., Volkov, Y., Vlasova, I.I., Belikova, N.A., Yanamala, N., Kapralov, A., Tyurina, Y.Y., Shi, J., Kisin, E.R., Murray, A.R., Franks, J., Stolz, D., Gou, P., Klein-Seetharaman, J., Fadeel, B., Star, A. & Shvedova, A.A. (2010). Carbon nano-tubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nature Nanotech. 5, 354–359. DOI: 10.1038/nnano.2010.44.10.1038/nnano.2010.44
  17. 17. Li, J.Z. & Zhang, Y.F. (2006). Cutting of multi walled carbon nanotubes. Appl. Surf. Sci. 252, 2944–2948. DOI: 10.1016/j.apsusc.2005.04.039.10.1016/j.apsusc.2005.04.039
  18. 18. Peng, J., Qu, X.X., Wei, G.S., Li, J.Q. & Qiao, J.L. (2004). The cutting of MWNTs using gamma radiation in the presence of dilute sulfuric acid. Carbon, 42, 2741–2744. DOI: 10.1016/j.carbon.2004.05.015.10.1016/j.carbon.2004.05.015
  19. 19. Gu, Z., Peng, H., Hauge, R.H., Smalley, R.E. & Mar-grave, J.L. (2002). Cutting single-wall carbon nanotubes through fluorination. Nano Lett. 2, 1009–1013. DOI: 10.1021/nl025675+.10.1021/nl025675+
  20. 20. Wang, X.X., Wang, J.N., Su, L.F. & Niu, J.J. (2006). Cutting of multi-walled carbon nanotubes by solid-state reaction. J. Mater. Chem. 16, 4231–4234. DOI: 10.1039/B609231D.10.1039/B609231
  21. 21. Pierard, N., Fonseca, A., Konya, Z., Willems, I., Tendeloo, G.V. & Nagy, J.B. (2001). Production of short carbon nanotubes with open tips by ball milling. Chem. Phys. Lett. 335, 1–8. DOI: 10.1016/S0009-2614(01)00004-5.10.1016/S0009-2614(01)00004-5
  22. 22. Konya, Z., Vesselenyi, I., Niesz, K., Kukovecz, A., Demortier, A., Fonseca, A., Delhalle, J., Mekhalif, Z., Nagy, J.B., Koos, A.A., Osváth, Z., Kocsonya, A., Biró, L.P. & Kiricsi, I. (2002). Large scale production of short functionalized carbon nanotubes. Chem. Phys. Lett. 360, 429–435. DOI: 10.1016/S0009-2614(02)00900-4.10.1016/S0009-2614(02)00900-4
  23. 23. Kukovecz, K., Kanyo, T., Konya, Z. & Kiricsi, I. (2005). Long-time low impact ball milling of multi-wall carbon nano-tubes. Carbon, 43, 994–1000. DOI: 10.1016/j.carbon.2004.11.030.10.1016/j.carbon.2004.11.030
  24. 24. Koshio, A., Yudasaka, M., Zhang, M. & Iijima, S. (2001). A simple way to chemically react single-wall carbon nanotubes with organic materials using ultrasonication. Nano Lett. 1, 361–363. DOI: 10.1021/nl0155431.10.1021/nl0155431
  25. 25. Shimada, T., Yanase, H., Morishita, K., Hayashi, J.I. & Chiba, T. (2004). Points of onset of gasification in a multi-walled carbon nanotube having an imperfect structure. Carbon, 42, 1635–1639. DOI: 10.1016/j.carbon.2004.02.019.10.1016/j.carbon.2004.02.019
  26. 26. Li, Q.W., Yan, H., Ye, Y.C., Zhang, J. & Liu, Z.F. (2002). Defect location of individual single-walled carbon nanotubes with a thermal oxidation strategy. J. Phys. Chem. B. 106, 11085–8. DOI: 10.1021/jp026512c.10.1021/jp026512c
  27. 27. Kirk, J., Ziegler, K.J., Gu, Z., Shaver, J., Chen, Z., Flor, E.L., Schmidt, D.J., Chan, C., Hauge, R.H. & Smalley, R.E. (2005). Cutting single-walled carbon nanotubes. Nanotechnology, 16: S539–S544. DOI: 10.1088/0957-4484/16/7/031.10.1088/0957-4484/16/7/031
  28. 28. Wang, C., Guo, S., Pan, X., Chen, W. & Bao, X. (2008). Tailored cutting of carbon nanotubes and controlled dispersion of metal nanoparticles inside their channels. J. Mater. Chem. 18, 5782–5786. DOI: 10.1039/B811560E.10.1039/B811560
  29. 29. Hennrich, F., Krupke, R., Arnold, K., Stu1tz, J.A.R., Lebedkin, S., Koch, T., Schimmel, T. & Kappes, M.M. (2007). The mechanism of cavitations-induced scission of single-walled carbon nanotubes. J. Phys. Chem. B. 111, 1932-1937. DOI: 10.1021/jp065262n.10.1021/jp065262n
  30. 30. Cheng, Q., Debnath, S., Gregan, E. & Byrne, H.J. (2010). Ultrasound-assisted SWNTs dispersion: effects of sonication parameters and solvent properties. J. Phys. Chem. C. 114, 8821-8827. DOI: 10.1021/jp101431h.10.1021/jp101431h
  31. 31. Nagai, H., Okazaki, Y., Chew, S.H., Misawa, N., Yamashita, Y., Akatsuka, S., Ishihara, T., Yamashita, K., Yoshikawa, Y., Yasui, H., Jiang, L., Ohara, H., Takahashi, T., Ichihara, G., Kostarelos, K., Miyata, Y., Shinohara, H. & Toyokuni, S. (2011). Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc. Natl. Acad. Sci. USA 108, E1330–E1338. DOI: 10.1073/pnas.1110013108.10.1073/pnas.1110013108
  32. 32. Sohaebuddin, S.K., Thevenot, P.T., Baker, D., Eaton, J.W. & Tang, L. (2010). Nanomaterial cytotoxicity is composition, size and cell type dependent. Part Fibre Toxicol. 7, 22. DOI: 10.1186/1743-8977-7-22.10.1186/1743-8977-7-22
  33. 33. Stern, S.T., Adiseshaiah, P.P. & Crist, R.M. (2012). Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterials toxicity. Part Fibre Toxicol. 9, 20. DOI: 10.1186/1743-8977-9-20.10.1186/1743-8977-9-20
  34. 34. Gratton, S.E., Rapp, P.A., Pohlhaus, P.D., Luft, J.C., Madden, V.J., Napier, M.E. & DeSimone, J.M. (2008). The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA 105, 11613–11618. doi: 10.1073/pnas.0801763105.10.1073/pnas.0801763105
  35. 35. Fraczek-Szczypta, A., Menaszek, E. & Blazewicz, S. (2011). Some observations on carbon nanotubes susceptibility to cell phagocytosis. J. Nanomater. 473516–473524. DOI: org/10.1155/2011/473516.10.1155/2011/473516
  36. 36. Wick, P., Manser, P., Limbach, L.K., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., Stark, W.J. & Bruinink, A. (2007). The degree and kind of agglom eration affect carbon n anotube cytotoxicity. Toxicol. Lett. 168, 121–131. DOI: 10.1016/j.toxlet.2006.08.019.10.1016/j.toxlet.2006.08.019
  37. 37. Fotakis, G. & Timbrell, J.A. (2006). In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lies following exposure to cadmium chloride. Toxicol. Lett. 160, 171–177. DOI: 10.1016/j.toxlet.2005.07.001.10.1016/j.toxlet.2005.07.001
  38. 38. Davoren, M., Herzog, E., Casey, A., Cottineau, B. & Chambers, G. (2007). In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol. In Vitro. 21, 438–448. DOI: 10.1016/j.tiv.2006.10.007.10.1016/j.tiv.2006.10.007
Language: English
Page range: 71 - 79
Published on: Jul 25, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Krzysztof Cendrowski, Magdalena Jedrzejczak-Silicka, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.