Have a personal or library account? Click to login
Production of (R)-styrene oxide by recombinant whole-cell biocatalyst in aqueous and biphasic system Cover

Production of (R)-styrene oxide by recombinant whole-cell biocatalyst in aqueous and biphasic system

By: Feng Xue and  Jian Gao  
Open Access
|Jul 2018

References

  1. 1. Hwang, S.H., Choi, C.Y. & Lee, E.Y. (2010). Bio- and chemo-catalytic preparations of chiral epoxides. J. Ind. Eng. Chem. 16, 1–6. DOI: 10.1016/j.jiec.2010.01.001.10.1016/j.jiec.2010.01.001
  2. 2. Choi, W.J. (2009). Biotechnological production of enantio-pure epoxides by enzymatic kinetic resolution. Appl. Microbiol. Biot. 84, 239–247. DOI: 10.1007/s00253-009-2110-9.10.1007/s00253-009-2110-9
  3. 3. Kamble, M.P. & Yadav, G.D. (2017). Biocatalytic resolution of (R,S)-styrene oxide using a novel epoxide hydrolase from red mung beans. Catal. Today DOI: 10.1016/j.cattod.2017.06.013.10.1016/j.cattod.2017.06.013
  4. 4. Saini, P., Kumar, N., Wani, S.I., Sharma, S., Chimni, S.S. & Sareen, D. (2017). Bioresolution of racemic phenyl glycidyl ether by a putative recombinant epoxide hydrolase from Streptomyces griseus NBRC 13350. World J. Microb. Biot. 33, 82. DOI: 10.1007/s11274-017-2248-z.10.1007/s11274-017-2248-z
  5. 5. Hu, D., Wang, R., Shi, X.L., Ye, H.H., Wu, Q., Wu, M.C. & Chu, J.J. (2016). Kinetic resolution of racemic styrene oxide at a high concentration by recombinant Aspergillus usamii epoxide hydrolase in an n-hexanol/buffer biphasic system. J. Biotech. 236, 152–58. DOI: 10.1016/j.jbiotec.2016.08.013.10.1016/j.jbiotec.2016.08.013
  6. 6. Chen, W.J., Lou, W.Y., Yu, C.Y., Wu, H., Zong M.H. & Smith, T.J. (2012). Use of hydrophilic ionic liquids in a two--phase system to improve Mung bean epoxide hydrolase-mediated asymmetric hydrolysis of styrene oxide. J. Biotech. 162, 183–90. DOI: 10.1016/j.jbiotec.2012.09.006.10.1016/j.jbiotec.2012.09.006
  7. 7. Pu, W., Cui, C., Guo, C. & Wu, Z.L. (2018). Characterization of two styrene monooxygenases from marine microbes. Enzyme Microb. Tech. 112, 29–34. DOI: 10.1016/j.enzmictec.2018.02.001.10.1016/j.enzmictec.2018.02.001
  8. 8. Wu, S.K., Li, A.T., Chin, Y.S. & Li, Z. (2013). Enantioselctive hydrolysis of racemic and meso-epoxides with recombinant Escherichia coli expressing epoxide hydrolase from Sphinggomonas sp. HXN-200: Preparation of epoxides and vicinal diols in high ee and high concentration. Acs Catal. 3, 752–759. DOI: 10.1021/cs300804v.10.1021/cs300804v
  9. 9. Panke, S., Wubbolts, M.G., Schmid, A. & Witholt, B. (2000). Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol. Bioeng. 69, 91–100. DOI: 10.1002/(SICI)1097-0290(20000705)69:1<;91::AID-BIT11>3.0.CO;2-X.10.1002/(SICI)1097-0290(20000705)69:1<;91::AID-BIT11>3.0.CO;2-X
  10. 10. Tischler, D., Groning, J.A.D., Kaschabek, S.R. & Schlo-mann, M. (2012). One-component styrene monooxygenases: an evolutionary view on a rare class of flavoproteins. Appl. Biochem. Biotechnol. 167, 931–44. DOI: 10.1007/s12010-012-9659-y.10.1007/s12010-012-9659-y
  11. 11. Zhu, Q.Q., He, W.H., Kong, X.D., Fan, L.Q., Zhao, J., Li, S.X. & Xu, J. H. (2014). Heterologous over-expression of Vigna radiate epoxide hydrolase in Escherichia coli and its catalytic performance in enantioconvergent hydrolysis of p-nitrostyrene oxide into (R)-p-nitrophenyl glycol. Appl. Microbiol. Biot. 98, 207–218. DOI: 10.1007/s00253-013-4845-6.10.1007/s00253-013-4845-6
  12. 12. Hopmann, K.H., Hallberg, B.M. & Himo, F. (2005). Catalytic Mechanism of Limonene epoxide hydrolase, a theoretical study. J. Am. Chem. Soc. 127, 14339–14347. DOI: 10.1021/ja050940p.10.1021/ja050940p
  13. 13. Zocher, F., Enzelberger, M.M., Bornscheuer, U.T., Hauer, B. & Schmid, R.D. (1999). A colorimetric assay suitable for screening epoxide hydrolase activity. Anal. Chim. Acta. 391, 345–351. DOI: 10.1016/S0003-2670(99)00216-0.10.1016/S0003-2670(99)00216-0
  14. 14. Ye, H.H., Hu, D., Shi, X. L., Wu, M.C., Deng, C. & Li, J. F. (2016). Directed modification of a novel epoxide hydrolase from Phaseolus vulgaris, to improve its enantioconvergence towards styrene epoxides. Catal. Commun. 87, 32–35. DOI: 10.1016/j.catcom.2016.08.036.10.1016/j.catcom.2016.08.036
  15. 15. Kong, X.D., Ma, Q., Zhou, J.H., Zeng, B.B. & Xu, J.H. (2014). A smart library of epoxide hydrolase variants and the top hits for synthesis of (S)-beta-blocker precursors. Angew Chem. Int. Edit. 53, 6641–6644. DOI: 10.1002/anie.201402653.10.1002/anie.20140265324841567
  16. 16. Saini, P., & Sareen, D. (2017). An overview on the enhancement of enantioselectivity and stability of microbial epoxide hydrolases. Mol. Biotech. 59, 1–19. DOI: 10.1007/s12033-017-9996-8.10.1007/s12033-017-9996-828271340
  17. 17. Woo, J.H., Kang, J.H., Kang, S., Hwang, Y.O. & Kim, S.J. (2009). Cloning and characterization of an epoxide hydrolase from Novosphingobium aromaticivorans. Appl. Microbiol. Biot. 82, 873–81. DOI: 10.1007/s00253-008-1791-910.1007/s00253-008-1791-919083233
  18. 18. Reetz, M.T., Bocola, M., Wang, L.W., Sanchis, J., Cronin, A., Arand, M., Zou, J., Archelas, A., Bottalla, A.L. Naworyta, A. & Mowbray, S.L. (2009). Directed evolution of an enantioselective epoxide hydrolase: Uncovering the source of enantioselectivity at each evolutionary stage. J. Am. Chem. Soc. 131, 7334–43. DOI: 10.1021/ja809673d.10.1021/ja809673d19469578
  19. 19. Lee, E.Y., Yoo, S.S., Kim, H.S., Lee, S.J., Oh, Y.K. & Park, S. (2004). Production of (S)-styrene oxide by recombinant Pichia pastori containing epoxide hydrolase from Rhodotorula glutinis. Enzyme Microb. Tech. 35, 624–31. DOI: 10.1016/j.enzmictec.2004.08.016.10.1016/j.enzmictec.2004.08.016
  20. 20. Yildirim, D., Tükel, S.S., Alagoz, D. & Alptekin, O. (2011). Preparative-scale kinetic resolution of racemic styrene oxide by immobilized epoxide hydrolase. Enzyme Microb. Tech. 49, 555–559. DOI: 10.1016/j.enzmictec.2011.08.00310.1016/j.enzmictec.2011.08.00322142731
  21. 21. Woo, M.H., Kim, H.S. & Lee, E.Y. (2012). Development and characterization of recombinant whole cells expressing the soluble epoxide hydrolase of Danio rerio and its variant for enantioselective resolution of racemic styrene oxides. J. Ind. Eng. Chem. 18, 384–91. DOI: 10.1016/j.jiec.2011.11.110.10.1016/j.jiec.2011.11.110
  22. 22. Zhao, J., Chu, Y.Y., Li, A.T., Ju, X., Kong, X.D. & Pan, J. (2011). An unusual (R)-selective epoxide hydrolase with high activity for facile preparation of enantiopure glycidyl ethers. Adv. Synth. Catal. 353, 1510–18. DOI: 10.1002/adsc.201100031.10.1002/adsc.201100031
  23. 23. Pedragosa-Moreau, S., Morisseau, C., Zylber, J., Archelas, A., Baratti, J. & Furstoss, R. (1997). Microbial transformations. 33. Fungal epoxide hydrolases applied to the synthesis of enantiopure para-substituted styrene oxides, a mechanistic approach. J. Org. Chem. 61, 7402–07. DOI: 10.1002/chin.199710036.10.1002/chin.199710036
  24. 24. Xue, F., Liu, Z.Q., Zou, S.P., Wan, N.W., Zhu, W.Y. & Zheng, Y.G. (2014). A novel enantioselective epoxide hydrolase from Agromyces mediolanus ZJB120203: Cloning, characterization and application. Process Biochem. 49, 409–417. DOI: 10.1016/j.procbio.2014.01.003.10.1016/j.procbio.2014.01.003
  25. 25. Baldascini, H., Ganzeveld, K.J. & Janssen, D.B. (2001). Effect of mass transfer limitations on the enzymatic kinetic resolution of epoxides in a two-liquid-phase system. Biotechnol. Bioeng. 73, 44–54. DOI: 10.1002/1097-0290(20010405)73:13.0.CO.10.1002/1097-0290(20010405)73:13.0.
  26. 26. Hwang, S., Hyun, H., Lee, B., Park, Y., Lee, E.Y. & Choi, C. (2006). Purification and characterization of a recombinant Caulobacter crescentus epoxide hydrolase. Biotechnol. Bioproc. E. 11, 282–287. DOI: 10.1007/BF03026241.10.1007/BF03026241
  27. 27. Llanes, A. (1999). Stability of biocatalyst. Electron J. Biotech. 11, 220. DOI: 10.2225/vol2-issue1-fulltext-2.10.2225/vol2-issue1-fulltext-2
  28. 28. Sindy, E. & Claudia, B. (2013). Kinetic study of the colloidal and enzymatic stability of beta-galactosidase, for designing its encapsulation route through sol-gel route assisted by Triton X-100 surfactant. Biochem. Eng. J. 75, 32–38. DOI: 10.1016/j.bej.2013.03.010.10.1016/j.bej.2013.03.010
  29. 29. Rubingh, D.N. (1996).The influence of surfactants on enzyme activity. Curr. Opin. Colloid In. 1, 598–603. DOI: 10.1016/S1359-0294(96)80097-5.10.1016/S1359-0294(96)80097-5
  30. 30. Gong, P.F., Xu, J.H., Tang, Y.F. & Wu, H.Y. (2003). Improved catalytic performance of Bacillus megaterium epoxide hydrolase in a medium containing Tween-80. Biotechnol. Progr. 19, 652–654. DOI: 10.1021/bp020293v.10.1021/bp020293v12675611
  31. 31. Kim, S.W., Seo, W.T. & Park, Y.H. (1997). Enhanced synthesis of trisporic acid and β-carotene production in Blakeslea trispora by addition of a non-ionic surfactant, Span 20. J. Biosci. Bioeng. 84, 330–332. DOI: 10.1016/S0922-338X(97)89253-7.10.1016/S0922-338X(97)89253-7
  32. 32. Laane, C., Boeren, S., Vos, K. & Veeger, C. (2009). Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng. 102, 2–8. DOI: 10.1002/bit.260300112.10.1002/bit.260300112
  33. 33. Lee, E.Y. (2007). Enantioselective hydrolysis of epichlorohydrin in organic solvents using recombinant epoxide hydrolase. J. Ind. Eng. Chem. 13, 159–62.
  34. 34. Choi, W.J., Lee, E.Y., Yoon, S.J., Yang, S.T. & Choi, C.Y. (1999). Biocatalytic production of chiral epichlorohydrin in organic solvents. J. Biosci. Bioeng. 88, 339–41. DOI: 10.1016/S1389-1723(00)80022-5.10.1016/S1389-1723(00)80022-5
  35. 35. Liu, Z.Y., Michel, J., Wang, Z.S., Witholt, B. & Li, Z. (2006). Enantioselective hydrolysis of styrene oxide with the epoxide hydrolase of Sphingomonas sp. HXN-200. Tetrahedron-Asymmetr. 17, 47–52. DOI: 10.1016/j.tetasy.2005.11.018.10.1016/j.tetasy.2005.11.018
  36. 36. Lee, E.Y., Yoo, S.S., Kim, H.S., Lee, S.J., Oh, Y.K. & Park, S. (2004). Production of (S)-styrene oxide by recombinant Pichia pastori containing epoxide hydrolase from Rhodotorula glutinis. Enzyme Microb. Tech. 35, 624–31. DOI: 10.1016/j.enzmictec.2004.08.016.10.1016/j.enzmictec.2004.08.016
  37. 37. Lee, S.J., Kim, H.S., Kim, S.J., Park, S., Kim, B.J. & Shuler, M.L. (2007). Cloning, expression and enantioselective hydrolytic catalysis of a microsomal epoxide hydrolase from a marine fish, Mugil cephalus. Biotechnol. Lett. 29, 237–246. DOI: 10.1007/s10529-006-9222-4.10.1007/s10529-006-9222-417151961
  38. 38. Yildirim, D., Tükel, S.S., Alagoz, D. & Alptekin, O. (2011). Preparative-scale kinetic resolution of racemic styrene oxide by immobilized epoxide hydrolase. Enzyme Microb. Tech. 49, 555–559. DOI: 10.1016/j.enzmictec.2011.08.003.10.1016/j.enzmictec.2011.08.00322142731
  39. 39. Kim, H.S., Lee, S.J., Lee, E.J., Hwang, J.W., Park, S., Kim, S.J. & Lee, E.Y. (2005). Cloning and characterization of a fish microsomal epoxide hydrolase of Danio rerio and application to kinetic resolution of racemic styrene oxide. J. Mol. Catal. B-Enzym. 37, 30–35. DOI: 10.1016/j.molcatb.2005.09.003.10.1016/j.molcatb.2005.09.003
Language: English
Page range: 54 - 60
Published on: Jul 25, 2018
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Feng Xue, Jian Gao, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.