Have a personal or library account? Click to login
A novel DOPO-g-KH550 modification wood fibers and its effects on the properties of composite phenolic foams Cover

A novel DOPO-g-KH550 modification wood fibers and its effects on the properties of composite phenolic foams

Open Access
|Jul 2018

References

  1. 1. Lei, S., Guo, Q., Zhang, D., Shi, J., Liu, L. & Wei, X.. (2010). Preparation and properties of the phenolic foams with controllable nanometer pore structure. J. Appl. Poly. Sci. 117(6):3545-3550. DOI:10.1002/app.32280.10.1002/app.32280
  2. 2. Yang, H., Wang, X., Yuan, H., Song, L., Hu, Y., Yuen, R.K.K. (2012). Fire performance and mechanical properties of phenolic foams modified by phosphorus-containing polyethers. J. Poly. Res. 19(3):9831. DOI:10.1007/s10965-012-9831-710.1007/s10965-012-9831-7
  3. 3. Ma, Y., Wang, C. & Chum, F. (2017). Effects of fiber surface treatments on the properties of wood fiber-phenolic foam composites. Bioresources. 12(3), 4722–4736. DOI: 10.15376/biores.12.3.4722-4736.10.15376/biores.12.3.4722-4736
  4. 4. Rangari, V.K., Hassan, T.A., Zhou, Y., Mahfuz, H., Jeelani, S. & Prorok, B.C. (2010). Cloisite clay-infused phenolic foam nanocomposites. J. Appl. Polym. Sci. 103(1), 308–314. DOI:10.1002/app.25287.10.1002/app.25287
  5. 5. Bledzki, A.K. & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24(2), 221–274. DOI: 10.1016/S0079-6700(98)00018-5.10.1016/S0079-6700(98)00018-5
  6. 6. Canché-Escamilla, G., Cauich-Cupul, J.I., Mendizábal, E., Puig, J.E., Vázquez-Torres, H. & Herrera-Franco, P.J. (1999). Mechanical properties of acrylate-grafted henequen cellulose fibers and their application in composites. Composites Part A Applied Science & Manufacturing. 30(3), 349–359. DOI: 10.1016/S1359-835X(98)00116-X.10.1016/S1359-835X(98)00116-X
  7. 7. Mitra, B.C., Basak, R.K. & Sarkar, M. (1998). Studies on jute-reinforced composites, its limitations, and some solutions through chemical modifications of fibers. J. Appl. Polym. Sci. 67(6), 1093–1100. DOI:10.1002/(SICI)1097-4628(19980207)67:6<;1093:AID-APP17>3.0.CO;2-1.10.1002/(SICI)1097-4628(19980207)67:6<;1093:AID-APP17>3.0.CO;2-1
  8. 8. Rana, A.K., Mandal, A., Mitra, B.C., Jacobson, R., Rowell, R. & Banerjee, A.N.. (1998). Short jute fiber-reinforced polypropylene composites: Effect of compatibilizer. J. Appl. Polym. Sci. 69(2), 329–338. DOI: 10.1002/(SICI)1097-4628(19980711)69:2<;329::AID-APP14>3.0.CO;2-R.10.1002/(SICI)1097-4628(19980711)69:2<;329::AID-APP14>3.0.CO;2-R
  9. 9. Xie, Y., Hill, C.A.S., Xiao, Z., Militz, H. & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A. 41(7), 806–819. DOI: 10.1016/j.compositesa.2010.03.005.10.1016/j.compositesa.2010.03.005
  10. 10. Maldas, D. & Kokta, B.V. (1993). Performance of Hybrid Reinforcements in PVC Composites: Part Iural fiber/polymer composites: A review. Compositesforcements. J. Testing & Evaluation. 21(1), 5. DOI: 10.1177/073168449201101002.10.1177/073168449201101002
  11. 11. Mohanty, A.K., Misra, M. & Drzal, L.T. (2002). Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World. J. Polym. & the Environ. 10(1–2), 19–26. DOI: 10.1023/A:1021013921916.10.1023/A:1021013921916
  12. 12. Sanadi, A.R., Caulfield, D.F., Rowell, R.M. (1994). Reinforcing polypropylene with natural fibers. Societyofplasticsengineers Inc. :v50(:n4):27-28. DOI: 10.1515/pjct-2017-0077.10.1515/pjct-2017-0077
  13. 13. Rider, A. & Arnott, D. (2000). Boiling water and silane pre-treatment of aluminium alloys for durable adhesive bonding. International journal of adhesion and adhesives. 20(3), 209–220. DOI: 10.1016/S0143-7496(99)00046-9.10.1016/S0143-7496(99)00046-9
  14. 14. Mittal, K.L. (2007). Silanes and other coupling agents. CRC Press.10.1163/ej.9789067644525.i-410
  15. 15. Ma, Y., Wang, C. & Chu, F. (2017). The structure and properties of eucalyptus fiber/phenolic foam composites under N-ng. International journal of adhesion and adhesives. Polymers & the Environment. arch. mount of DKWF19(4), 116–121. DOI: 10.1515/pjct-2017-0077.10.1515/pjct-2017-0077
  16. 16. Zhang, W., Li, X. & Yang, R. (2011). Novel flame retardancy effects of DOPO-POSS on epoxy resins. Polymer Degradation & Stability. 96(12), 2167–2173. DOI: 10.1016/j.polymdegradstab.2011.09.016.10.1016/j.polymdegradstab.2011.09.016
  17. 17. Zang, L., Wagner, S., Ciesielski, M. & Mb, P. 2011.09.016.2011.09.016” f DOPO-PO-shaped and hyperbranched phosphorus-containing flame retardants in epoxy resins. Polymers for Advanced Technologies. 22(7), 1182ng flame retardan/pat.1990.10.1002/pat.1990
  18. 18. Perret, B., Schartela, M., Ciesielski, J. & Diederichs, M. Dvanced Technologies. epoxy resins. Polymer Degradation & Stability. γ-aminopropyl trimethoxy silane pretreatments. Polish Journal of Chemical Technology. was 6%.47(5), 1081–1089. DOI: 10.1016/j.eurpolymj.2011.02.008.10.1016/j.eurpolymj.2011.02.008
  19. 19. Dumitrascu, A. (2012). Flame retardant polymeric materials achieved by incorporation of styrene monomers containing both nitrogen and phosphorus. Polymer Degradation & Stability. 97(12), 2611–2618. DOI: 10.1016/j.polymdegrad-stab.2012.07.012.10.1016/j.polymdegrad-stab.2012.07.012
  20. 20. Sun, D. & Yao, Y. (2011). Synthesis of three novel phosphorus-containing flame retardants and their application in epoxy resins. Polymer Degradation & Stability. 96(10), 1720–1724. DOI: 10.1016/j.polymdegradstab.2011.08.004.10.1016/j.polymdegradstab.2011.08.004
  21. 21. Wang, P. & Cai, Z.. (2017). Highly efficient flame-retardant epoxy resin with a novel DOPO-based triazole compound: Thermal stability, flame retardancy and mechanism. Polymer Degradation & Stability. 137. DOI: 10.1016/j.polymdegrad-stab.2017.01.014.10.1016/j.polymdegrad-stab.2017.01.014
  22. 22. Carja, I.D., D. Serbezeanu, T. Vladbubulac, C. Hamciuc, A. Coroaba, G. & Lisa, C.G. L DOPO-based triazole compound: Thermal stability, flame retardancy and mechanism. Polymer Degradation & Stability. ical Technlame retardant epoxy resins. J. Mater. Chem. A. 2(38), 16230–16241.DOI: 10.1039/c4ta03197k.10.1039/c4ta03197k
  23. 23. Yuxiang, O. & Jianjun, L. (2006). Flame Retardants: Property, Preparation and Application. Beijing, Chemical Industry Press.
  24. 24. Shan, G., Jia, L., Zhao, T., Jin, C., Liu, R. & Xiao, Y.. (2017). A novel DDPSi-FR flame retardant treatment and its effects on the properties of wool fabrics. Fibers & Polymers. 18(11), 2196–2203. DOI: 10.1007/s12221-017-7244-210.1007/s12221-017-7244-2
  25. 25. Tang, C., Yan, H., Li, M. & Lv, Q. (2017). A novel phosphorus-containing polysiloxane for fabricating high performance electronic material with excellent dielectric and thermal properties. J. Mater. Sci. Mater. Electron. 1–10. DOI: 10.1007/s10854-017-7904-410.1007/s10854-017-7904-4
  26. 26. Fang, Y., Zhou, X., Xing, Z. & Wu, Y. (2017). An effective flame retardant for poly(ethylene terephthalate) synthesized by phosphaphenanthrene and cyclotriphosphazene. J. Appl. Polym. Sci. 134(35). DOI: 10.1002/app.45246.10.1002/app.45246
  27. 27. Wan, X., Zhan, Y., Long, Z., Zeng, G., He, Y. (2017). Core@double-shell structured magnetic halloysite nanotube nano-hybrid as efficient recyclable adsorbent for methylene blue removal. Chem. Eng. J. 330(15), 491–504.DOI: 10.1016/j.cej.2017.07.178.10.1016/j.cej.2017.07.178
  28. 28. Wan, X., Y. Zhan, Z. Long, G. Zeng, Y. Ren, Y. He. (2017). High-performance magnetic poly (arylene ether nitrile) nanocomposites: co-modification of Fe3O4 via mussel inspired poly (dopamine) and amino functionalized silane KH550. Applied Surface Science. 425(15), 905–914. DOI: 10.1016/j.apsusc.2017.07.136.10.1016/j.apsusc.2017.07.136
  29. 29. Su, J., J. Zhang. (2017). Effect of treated mica on rheological, cure, mechanical, and dielectric properties of ethylene propylene diene monomer (EPDM)/barium titanate (BaTiO3)/mica. J. Appl. Polym. Sci. 134(19). DOI: 10.1002/app.44833.10.1002/app.44833
  30. 30. Ni, P., Y. Fang, L. Qian, Y. Qiu. (2017). Flame-retardant behavior of a phosphorus/silicon compound on polycarbonate. J. Appl. Polym. Sci. DOI: 10.1002/app.45815.10.1002/app.45815
  31. 31. Chen, T., Chen, X., Wang, M., Hou, P., Jie, C., Li, J., Xu, Y., Zeng, B. & Dai, L. (2017). A novel halogen-free co-curing agent with linear multi-aromatic rigid structure as flame-retardant modifier in epoxy resin. Polymers for Advanced Technologies. DOI: 10.1002/pat.4170.10.1002/pat.4170
  32. 32. Cui, Y., Lee, S., Noruziaan, B., Cheung, M. & Tao, J. (2008). Fabrication and interfacial modification of wood/recycled plastic composite materials. Composites Part A Applied Science & Manufacturing. 39(4), 655–661. DOI: 10.1016/j.compositesa.2007.10.017.10.1016/j.compositesa.2007.10.017
  33. 33. Valadez-Gonzalez, A., Cervantes-Uc, J.M., Olayo, R. & Herrera-Franco, P.J. (1999). Chemical modification of henequén fibers with an organosilane coupling agent. Composites Part B Engineering. 30(3), 321–331. DOI: 10.1016/S1359-8368(98)00055-9.10.1016/S1359-8368(98)00055-9
  34. 34. Wang, L., Han, G. & Zhang, Y. (2007). Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments. Carbohydrate Polymers. 69(2), 391–397. DOI: 10.1016/j.carbpol.2006.12.028.10.1016/j.carbpol.2006.12.028
  35. 35. Lu, B., L. Zhang, J. Zeng, e. et al. (2005). Natural Fiber Composites Material Chemical Industry Press.
  36. 36. Huo, S., Wang, J., Yang, S., Chen, X., Zhang, B., Wu, Q. & Zhang, B. (2017). Flame-retardant performance and mechanism of epoxy thermosets modified with a novel reactive flame retardant containing phosphorus, nitrogen, and sulfur. Polym. Adv. Technol. 29(1), 497–506. DOI: 10.1002/pat.4145.10.1002/pat.4145
  37. 37. Qiu, Y., Wachtendorf, V., Klack, P., Qian, L., Liu, Z. & Schartel, B. (2017). Improved flame retardancy by synergy between cyclotetrasiloxane and phosphaphenanthrene/triazine compounds in epoxy thermoset. Polymer International. 66(12), 1883–1890. DOI: 10.1002/pi.5466.10.1002/pi.5466
  38. 38. Jia, P., Zhang, M., Hu, L., Liu, C., Feng, G., Yang, X., Bo, C. & Zhou, Y. (2015). Development of vegetable oil based plasticizer for preparing flame retardant poly (vinyl chloride) materials. Rsc Advances. 5(93), 76392–76400. DOI: 10.1039/c5ra10509a.10.1039/C5RA10509A
  39. 39. Jia, P., Zhang, M., Hu, L., Zhou, J., Feng, G. & Zhou, Y. (2015). Thermal degradation behavior and flame retardant mechanism of poly(vinyl chloride) plasticized with a soybean--oil-based plasticizer containing phosphaphenanthrene groups. Polymer Degradation & Stability. 121, 292–302. DIO: 10.1016/j.polymdegradstab.2015.09.020.10.1016/j.polymdegradstab.2015.09.020
  40. 40. Jia, P., Zhang, M., Liu, C., Hu, L., Feng, G., Bo, C. & Zhou, Y. (2015). Effect of chlorinated phosphate ester based on castor oil on thermal degradation of poly (vinyl chloride) blends and its flame retardant mechanism as secondary plasticizer. Rsc Advances. 5(51), 1169–41178. DOI: 10.1039/c5ra05784a.10.1039/C5RA05784A
  41. 41. Li, Y.Y., Wang, B. & Ma, M.G. (2017). The enhancement performances of cotton stalk fiber/PVC composites by sequential two steps modification. J. Appl. Polym. Sci. 135(14):46090. DOI: 10.1002/app.4609010.1002/app.46090
  42. 42. Tengsuthiwat, J., Asawapirom, U., Siengchin, S. & Karger & Kocsis, J. oacute, zsef. (2017). Mechanical, thermal, and water absorption properties of melamine–formalde-hyde-treated sisal fiber containing polylactic acid composites. J. Appl. Polym. Sci. 135(2), 45681. DOI: 10.1002/app.45681.10.1002/app.45681
  43. 43. Ye, X., Wang, H., Wu, Z., Zhou, H. & Tian, X. (2018). Synthesis and functional features of wood fiber-polypropylene materials: Based on wood fibers with assembling nano-coating via adopting simple in situ-hydrothermal mechanism. Polym. Composites. 39(1), 5–13. DOI: 10.1002/pc.23894.10.1002/pc.23894
  44. 44. Wang, C. & Xu, G. (2010). Research on Hard-segment Flame-retardant Modification of Waterborne Polyurethane. China Coatings. DOI: 10.13531/j.cnki.china.coatings.2010.08.010.
  45. 45. Dong, Q., Liu, M., Ding, Y., Wang, F., Gao, C., Liu, P., Wen, B., Zhang, S. & Yang, M. (2013). Synergistic effect of DOPO immobilized silica nanoparticles in the intumescent flame retarded polypropylene composites. Polym. Adv. Technol. 24(8), 732–739. DOI: 10.1002/pat.3137.10.1002/pat.3137
  46. 46. Oktay, B., Emrah, Y., Ding, F., Wang, C., Gao, P., Liu, B., Wen, S., Zhang, M., Yang. (2013). Synergistic effect of DOPO immobilized silica nanoparticles in the intumescent flame retarded polyprop131(22), 132–142. DOI: 10.1016/j.polymer.2017.10.043.10.1016/j.polymer.2017.10.043
Language: English
Page range: 47 - 53
Published on: Jul 25, 2018
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Yufeng Ma, Xiang Geng, Xi Zhang, Chunpeng Wang, Fuxiang Chu, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.