Have a personal or library account? Click to login
Metals uptake behaviour in Miscanthus x giganteus plant during growth at the contaminated soil from the military site in Sliač, Slovakia Cover

Metals uptake behaviour in Miscanthus x giganteus plant during growth at the contaminated soil from the military site in Sliač, Slovakia

Open Access
|Jul 2018

References

  1. 1. Karthikeyan, R., Davis, L.C., Erickson, L.E., Al-Khatib, K., Kulakow, P.A., Barnes, P.L., Hutchinson, S.L. & Nurzhanova, A.A. (2004). Potential for plant-based remediation of pesticide-contaminated soil and water using nontarget plants such as trees, shrubs, and grasses. Critical Reviews in Plant Sciences. 23(1), 91–101. DOI: 10.1080/07352680490273518.10.1080/07352680490273518
  2. 2. Davis, L.C., Erickson, L.E., Narayanan, M. & Zhang, Q. (2003). Modeling and design of phytoremediation, In S.C. McCutcheon & J. L. Schnoor (Eds), Phytoremediation: Transformation and Control of Contaminants (pp. 661–694). Science and Technology&A Wiley-Intersciences Series of Texts and Monographs. DOI: 10.1002/047127304X.ch21.10.1002/047127304X.ch21
  3. 3. Li, G.Y., Hu, N., Ding, D.X., Zheng, J.F., Liu, Y.L., Wang, Y.D. & Nie, X.Q. (2011). Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in south china. Bulletin of Environmental Contamination and Toxicology. 86(6), 646–652. DOI: 10.1007/s00128-011-0291-2.10.1007/s00128-011-0291-221523506
  4. 4. Prasad, M.N.V. (2015). Bioremediation and bioeconomy (1st ed.). Elsevier Inc.
  5. 5. Maestri, E. & Marmiroli N. (2011). Transgenic plants for phytoremediation. International Journal of Phytoremediation. 13(1), 264–279. DOI: 10.1080/15226514.2011.568549.10.1080/15226514.2011.56854922046764
  6. 6. Witters, N., Mendelsohn, R.O., Van Slycken, S., Weyens, N., Schreurs, E., Meers, E., Tack, F., Carleer, R. & Vangronsveld, J. (2012). Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: Energy production and carbon dioxide abatement. Biomass & Bioenergy. 39, 454–469. DOI: 10.1016/j.biombioe.2011.08.016.10.1016/j.biombioe.2011.08.016
  7. 7. Witters, N., Van Slycken, S., Ruttens, A., Adriaensen, K., Meers, E., Meiresonne, L., Tack, F.M., Thewys, T., Laes, E. & Vangronsveld, J. (2009). Short-rotation coppice of willow for phytoremediation of a metal-contaminated agricultural area: A sustainability assessment. BioEnergy Research. 2(3), 144–152. DOI: 10.1007/s12155-009-9042-1.10.1007/s12155-009-9042-1
  8. 8. Gomes, H.I. (2012). Phytoremediation for bioenergy: Challenges and opportunities. Environmental Technology Reviews. 1(1), 59–66. DOI: 10.1080/09593330.2012.696715.10.1080/09593330.2012.696715
  9. 9. Nsanganwimana, F., Pourrut, B., Waterlot, C., Louvel, B., Bidar, G., Labidi, S., Fontaine, J., Muchembled, J., Sahraoui, A.L.H., Fourrier, H. & Donay, F. (2015). Metal accumulation and shoot yield of miscanthus x giganteus growing in contaminated agricultural soils: Insights into agronomic practices. Agriculture Ecosystems & Environment. 213, 61–71. DOI: 10.1016/j.agee.2015.07.023.10.1016/j.agee.2015.07.023
  10. 10. Brosse, N., Dufour, A., Meng, X.Z., Sun, Q.N. & Ragauskas, A. (2012). Miscanthus: A fast-growing crop for biofuels and chemicals production. Biofuels Bioproducts & Biorefining-Biofpr. 6(5), 580–598. DOI: 10.1002/bbb.1353.10.1002/bbb.1353
  11. 11. Beale, C.V., Bint, D.A. & Long, S.P. (1996). Leaf photosynthesis in the c-4-grass miscanthus x giganteus, growing in the cool temperate climate of southern england. J. Exp. Bot. 47(2), 267–273. DOI: 10.1093/jxb/47.2.267.10.1093/jxb/47.2.267
  12. 12. Christian, D., Bullard, M. & Wilkins, C. (1997). The agronomy of some herbaceous crops grown for energy in southern england. Aspects Appl. Biol. 49, 41–51.
  13. 13. Gopalakrishnan, G., Negri, M.C. & Snyder, S.W. (2011). A novel framework to classify marginal land for sustainable bio-mass feedstock production. J. Environ. Qual. 40(5), 1593–1600. DOI: 10.2134/jeq2010.0539.10.2134/jeq2010.0539
  14. 14. Nsanganwimana, F., Pourrut, B., Mench, M. & Douay, F. (2014). Suitability of miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J. Environ. Manage. 143, 123–134. DOI: 10.1016/j.jenvman.2014.04.027.10.1016/j.jenvman.2014.04.027
  15. 15. Pidlisnyuk, V., Stefanovska, T., Lewis, E.E., Erickson, L.E. & Davis, L.C. (2014). Miscanthus as a productive biofuel crop for phytoremediation. Criti. Rev. Plant Sci. 33(1), 1–19. DOI: 10.1080/07352689.2014.847616.10.1080/07352689.2014.847616
  16. 16. Techer, D., Martinez-Chois, C., Laval-Gilly, P., Henry, S., Bennasroune, A., D’Innocenzo, M. & Falla, J. (2012). Assessment of miscanthus x giganteus for rhizoremediation of long term pah contaminated soils. Appl. Soil Ecol. 62, 42–49. DOI: 10.1016/j.apsoil.2012.07.009.10.1016/j.apsoil.2012.07.009
  17. 17. Kocon, A. & Matyka, M. (2012). Phytoextractive potential of miscanthus giganteus and sida hermaphrodita growing under moderate pollution of soil with Zn and Pb. J. Food, Agri. & Environ. 10(2), 1253–1256.
  18. 18. Hodkinson, T., Renvoize, S. & Chase, M. (1997). Systematics of miscanthus. Aspects Appl. Biol. 49, 189–198.
  19. 19. Kahle, P., Beuch, S., Boelcke, B., Leinweber, P. & Schulten, H.R. (2001). Cropping of miscanthus in central europe: Biomass production and influence on nutrients and soil organic matter. Eur. J. Agron. 15(3), 171–184. DOI: 10.1016/S1161-0301(01)00102-2.10.1016/S1161-0301(01)00102-2
  20. 20. Speller, C.S. (1993). The potential for growing biomass crops for fuel on surplus land in the UK. Outlook Agricu. 22(1), 23–29.10.1177/003072709302200105
  21. 21. Huisman, W., Venturi, P. & Molenaar, J. (1997). Costs of supply chains of miscanthus giganteus. Industrial Crops and Products. 6(3–4), 353–366. DOI: 10.1016/S0926-6690(97)00026-5.10.1016/S0926-6690(97)00026-5
  22. 22. Semere, I.T. & Slater, F.M. (2007). Invertebrate populations in miscanthus (Miscanthus×giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass and Bioenergy. 31(1), 30–39. DOI: 10.1016/j.biombioe.2006.07.002.10.1016/j.biombioe.2006.07.002
  23. 23. Hedde, M., Van Oort, F., Boudon, E., Abonnel, F. & Lamy, I. (2013a). Responses of soil macroinvertebrate communities to Miscanthus cropping in different trace metal contaminated soils. Biomass and Bioenergy. 55, 122–129. DOI: 10.1016/j.biombioe.2013.01.016.10.1016/j.biombioe.2013.01.016
  24. 24. Hedde, M., van Oort, F., Renouf, E., Thénard, J. & Lamy, I. (2013b) Dynamics of soil fauna after plantation of perennial energy crops on polluted soils. Appl. Soul Ecol. 66, 29–39. DOI: 10.1016/j.apsoil.2013.01.012.10.1016/j.apsoil.2013.01.012
  25. 25. Al Souki, K.S., Louvel, B., Douay, F. & Pourrut, B. (2017). Assessment of Miscanthus x giganteus capacity to restore thefunctionality of metal-contaminated soils: Ex situ experiment. Appl. Soil Ecol. 115(7), 44–52. DOI: 10.1016/j.apsoil.2017.03.002.10.1016/j.apsoil.2017.03.002
  26. 26. Clifton-Brown, J., Hastings, A., Mos, M., McCalmont, J.P., Ashman, C., Awty-Carroll, D., Cerazy, J., Chiang, Y.C., Cosentino, S. & Cracroft-Eley, W., et al. (2017). Progress in upscaling miscanthus biomass production for the european bio-economy with seed-based hybrids. Global Change Biol. Bioen. 9, 6–17. DOI: 10.1111/gcbb.12357.10.1111/gcbb.12357
  27. 27. Pidlisnyuk, V., Erickson, L., Kharchenko, S. & Stefanovska, T. (2014). Sustainable land management: Growing miscanthus in soils contaminated with heavy metals. J. Environ. Protec. 5(8), 723–730. DOI: 10.4236/jep.2014.58073.10.4236/jep.2014.58073
  28. 28. Pidlisnyuk, V., Trögl, J., Stefanovska, T., Shapoval, P. & Erickson, L. (2016). Preliminary results on growing second generation biofuel crop miscanthus x giganteus at the polluted military site in Ukraine. Nova Biotechnol. Chim. 15(1), 77–84. DOI: 10.1515/nbec-2016-0008.10.1515/nbec-2016-0008
  29. 29. Stefanovska, T., Pidlisnyk, V. & Tomashkin, J. (2015). Growing second generation biofuel plant Miscanthus x giganteus at military soils contaminated with heavy metals. Bioenergy. 1, 50–53. (in Ukrainian).
  30. 30. Andersen, J. (2000, February) Management of contaminated sites and land in Central and Eastern Europe. Retrieved June 2, 2017, from http://www.statensnet.dk/pligtarkiv/fremvis.pl
  31. 31. Lindberg, A.L., Goessler, W., Gurzau, E., Koppova, K., Rudnai, P., Kumar, R., Fletcher, T., Leonardi, G., Slotova, K. & Gheorghiu, E., et al. (2006). Arsenic exposure in Hungary, Romania and Slovakia. J. Environ. Monit. 8(1), 203–208. DOI: 10.1039/B513206A.10.1039/B513206
  32. 32. Leonardi, G., Vahter, M., Clemens, F., Goessler, W., Gurzau, E., Hemminki, K., Hough, R., Koppova, K., Kumar, R. & Rudnai, P., et al. (2012). Inorganic arsenic and basal cell carcinoma in areas of Hungary, Romania, and Slovakia: A case-control study. Environ. Health Perspect. 120(5), 721–726. DOI: 10.1289/ehp.1103534.10.1289/ehp.1103534
  33. 33. Ceřveny, J. (2017). Experience on sanitation of contaminated places at the sites after Soviet Army. At: Materials of the workshop in the field of contaminated sites, Banska Bystrica, Slovakia. Available at: http://old.sazp.sk/public/index/go.php?id=2229HOME (in Slovakian).
  34. 34. State Standard of Ukraine. (2001). Ukrainian standard: Soil quality. Preliminary preparation of samples for physical-chemical analysis. DSTU ISO 11464-2001. Kyiv, Ukraine.
  35. 35. State Standard of Ukraine. (2007). National standard of Ukraine. Quality of soil. The method for determination of the nitrate and ammonium nitrogen. DSTU 4729-2007. Kyiv, Ukraine.
  36. 36. State Standard of Ukraine. (2004). National Standard of Ukraine. Quality of soil. The method for determination of organic matter. DSTU 4289-2004. Kyiv, Ukraine.
  37. 37. Mehlich, A. (1978). New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese and zinc. Commun. Soil Sci. Plant Anal. 9(6), 477–492. DOI: 10.1080/00103627809366824.10.1080/00103627809366824
  38. 38. United States Environmental Protection Agency. (2007). United States Standard: Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment. SW-846 Test Method 6200–2007. Washington DC.
  39. 39. State Standard of Ukraine. (2007). General requirements for the competence of testing and calibration laboratories. DSTU ISO/IEC 17025. Kyiv, Ukraine.
  40. 40. Altman, D.G. (1990). Practical statistics for medical research. London: Chapman & Hall.10.1201/9780429258589
  41. 41. Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1): 9pp. http://palaeoelectronica.org/2001_1/past/issue1_01.htm.
  42. 42. Hettiarachchi, G.M., Attanayake, C.P., Defoe, P.P. & Martin, S.E. (2016). Mechanisms to reduce risk potential. Sowing seeds in the city, Springer. 3, 155–170. DOI: 10.1007/978-94-017-7456-7_13.Essington, M.E. (2015). Soil and water chemistry: An integrative approach (2nd ed.). CRC press: Taylot & Francis Group.10.1007/978-94-017-7456-7_13.Essington.E.(2015).:(2nded.).CRCpress:Taylot&;
  43. 43. Hettiarachchi, G.M., Attanayake, C.P., Defoe, P.P. & Martin, S.E. (2016). Mechanisms to reduce risk potential. Sowing seeds in the city, Springer. 3, 155–170. DOI: 10.1007/978-94-017-7456-7_13.10.1007/978-94-017-7456-7_13
Language: English
Page range: 1 - 7
Published on: Jul 25, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Valentina V. Pidlisnyuk, Larry E. Erickson, Josef Trögl, Pavlo Y. Shapoval, Jan Popelka, Lawrence C. Davis, Tetyana R. Stefanovska, Ganga M. Hettiarachchi, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.