Have a personal or library account? Click to login
Mathematical modeling of large floating roof reservoir temperature arena Cover

Mathematical modeling of large floating roof reservoir temperature arena

By: Yang Liu,  Jiawei Fan and  Qinglin Cheng  
Open Access
|Apr 2018

References

  1. 1. Wei, S. & Qinglin, C. et al. (2016). Research on the variation law of heating temperature field and the effective energy utilization rate of a steam coil for the floating roof tank. Numerical Heat Trans. 70, 1345–1355.10.1080/10407782.2016.1243936
  2. 2. Nurten, V. (2003). Numerical analysis of the transient turbulent flow in a fuel oil storage tank. Int. J. Therm. Sci. 46, 3429–3440. DOI: 10.1016/S0017-9310(03)00145-5.10.1016/S0017-9310(03)00145-5
  3. 3. Wang, M., Zhang, X. & Yu, G. et al. (2017). Numerical study on the temperature drop characteristics of waxy crude oil in a double-plate floating roof oil tank. Appl. Therm. Enginee. 124, 560–570.10.1016/j.applthermaleng.2017.05.203
  4. 4. Oliveski, R.D.C., Macagnan, M.H., Copetti, J.B. & Petroll, A.D.L. (2005). Natural convection in a tank of oil: experimental validation of a numerical code with prescribed boundary condition. Exp. Therm. Fluid Sci. 29, 671–680. DOI: 10.1016/j.expthermflusci.2004.10.003.10.1016/j.expthermflusci.2004.10.003
  5. 5. Oliveski, R.D.C., Krenzinger, A. & Vielmo, H.A. (2001). Experimental and numerical analysis of a thermal storage tank. Exp. Therm. Fluid Sci. 3, 2193–2198. DOI: 10.1002/er.1057.10.1002/er.1057
  6. 6. Oliveski, R.D.C., Krenzinger, A. & Vielmo, H.A. (2003). Cooling of cylindrical vertical tanks submitted to natural internal convection. Int. J. Therm. Sci. 46, 2015–2026. DOI: 10.1016/S0017-9310(02)00508-2.10.1016/S0017-9310(02)00508-2
  7. 7. Rejane De Cesaro Oliveski. (2013). Correlation for the cooling process of vertical storage tanks under natural convection for high Prandtl number. Int. J. Heat Mass Trans. 57, 292–298.10.1016/j.ijheatmasstransfer.2012.10.038
  8. 8. Lin, W.X. & Armfield, S.W. (1999). Direct simulation of natural convection cooling in a vertical circular cylinder. Int. J. Therm. Sci. 42, 4117–4130. DOI: 10.1016/S0017-9310(99)00074-5.10.1016/S0017-9310(99)00074-5
  9. 9. Atmane, M.A., Chan, V.S.S. & Murray, D.B. (2003). Natural convection around a horizontal heated cylinder: the effects of vertical confinement. Int. J. Heat Mass Trans. 46, 3661–3672. DOI: 10.1016/S0017-9310(03)00154-6.10.1016/S0017-9310(03)00154-6
  10. 10. Sanapala, V.S., Velusamy, K. & Patnaik, B.S.V. (2016). CFD simulations on the dynamics of liquid sloshing and its control in a storage tank for spent fuel applications. Ann. Nuc. Energy 94, 494–509.10.1016/j.anucene.2016.04.018
  11. 11. Oliveira, P.J.R. & Issa, R.I. (2001). An improved PISO algorithem for the computation of buoyant driven flows. Num. Heat Trans. B-Fund. 40, 473–493.10.1080/104077901753306601
  12. 12. González, I., Pérez-Segarra, C.D., Lehmkuhl, O., Torras, S. & Oliva, A. (2016). Thermo-mechanical parametric analysis of packed-bed thermocline energy storage tanks. Appl. Energy 179, 1106–1122.10.1016/j.apenergy.2016.06.124
  13. 13. Rodriguez, I., Castro, J., Perez-Segarra, C.D. & Oliva, A. (2009). Unsteady numerical simulation of the cooling process of vertical storage tanks under laminar natural convection. Int. J. Therm. Sci. 48, 708–721. DOI: 10.1016/j.ijthermalsci.2008.06.002.10.1016/j.ijthermalsci.2008.06.002
  14. 14. Fernandez-Seara, J., Francisco, U., Dopazo, J. & Alberto, J. (2011). Experimental transient natural convection heat transfer from a vertical cylindrical tank. Appl. Therm. Eng. 31, 1915–1922. DOI: 10.1016/j.applthermaleng.2011.02.037.10.1016/j.applthermaleng.2011.02.037
  15. 15. Stig, G. & Jensen, A. (2012). Natural convection heat transfer from two horizontal cylinders at high Rayleigh numbers. Int. J. Heat Mass Trans. 55, 5552–5564. DOI: 10.1016/j.ijheatmasstransfer.2012.05.033.10.1016/j.ijheatmasstransfer.2012.05.033
  16. 16. Stig, G., Atle, J.B. & Anders, P.R. (2011). PIV investigation of buoyant plume from natural convection heat transfer above a horizontal heated cylinder. Int. J. Heat Mass Trans. 54, 4975–4987. DOI: 10.1016/j.ijheatmasstransfer.2011.07.011.10.1016/j.ijheatmasstransfer.2011.07.011
  17. 17. Reymond, O., Murray, D.B. & O’Donovan, T.S. (2008). Natural convection heat transfer from two horizontal cylinders. Exp. Therm. Fluid Sci. 32, 1702–1709. DOI: 10.1007/978-3-319-08132-8_2.10.1007/978-3-319-08132-8_2
  18. 18. Persoons, T., O’Gorman, I.M., Donoghue, D.B., Byrne, G. & Murray, D.B. (2011). Natural convection heat transfer and fluid dynamics for a pair of vertically alifned isothermal horizontal cylinders. Int. J. Therm. Sci. 54, 5163–5172. DOI: 10.1016/j.ijheatmasstransfer.2011.08.033.10.1016/j.ijheatmasstransfer.2011.08.033
  19. 19. Mawire, A. (2013). Experimental and simulated thermal stratification evaluation of an oil storage tank subjected to heat losses during charging. Appl. Energy 108, 459–465.10.1016/j.apenergy.2013.03.061
  20. 20. Yu, D. (2005). Development on temperature monitoring system of large floating roof tank. Oil Gas Stor. Transport 24, 41–43.
  21. 21. Yu, D. & Fang, X.Y. (2003). Temperature drop characteristics of oil in the large breathing roof tank. Oil Gas Stor. Transport 22, 47–49.
  22. 22. Li, W., Wang, Q., Li, R., Li, C., Yu, B., Zhang, J. & Dai, P. (2011). Numerical study on temperature field of a large floating roof oil tank. J. Chem. Indus. Eng. 62, 108–112.
  23. 23. Chouikh, R., Guizani, A., Cafsi, A. El, Maalej, M. & Belghith, A. (2000). Experimental study of the natural convection flow around an array of heated horizontal cylinders. Renew. Energ. 21, 65–78. DOI: 10.1016/S0960-1481(99)00120-2.10.1016/S0960-1481(99)00120-2
  24. 24. Bin Zhao, (2012). Numerical simulation for the temperature changing rule of the crude oil in a storage tank based on the wavelet finite element method. J. Therm. Anal. Calorim. 107, 3, 87–393.10.1007/s10973-011-1469-x
  25. 25. Tao, W. (2001). Numerical heat transfer. Xi ‘an: Xi ‘an Jiaotong University Press.
  26. 26. Jian, Z., Dong, H., Wei, L.X. & Liu, Y. (2015). Heat Loss Test and Estimate for the Large-scale Floating Roof Tank. Open Petrol. Eng. J. 8, 117–125. DOI: 10.2174/1874834101508010117.10.2174/1874834101508010117
  27. 27. Suhas, P. (1980). Numerical Heat Transfer and Fluid Flow. Boca Raton: CRC Press.
  28. 28. Versteeg, H.K. & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics: The Finite Volume Method. (2nd ed). New York: Pearson.
  29. 29. Jian Z., Liu, Y., Wei, L.X. & Dong, H. (2014). Transient Cooling of Waxy Crude Oil in a Floating Roof Tank. J. Appl. Mat. 2014, 1–12. DOI: 10.1155/2014/482026.10.1155/2014/482026
  30. 30. Cheng, Q.L., Sun, W., Shao, S., Li, Z. & Yi, X. (2014). The study of variation law and influence factors of heat transfer coefficient for floating roof storage tank. Energ. Conserv. Technol. 32, 151–154.
  31. 31. Fan, J.W. & Liu-et, Y. al. (2017). Hydrodynamics of residual oil droplet displaced by polymer solution in microchannels of lipophilic rocks. Int. J. Heat Technol. 35, 611–618.10.18280/ijht.350318
  32. 32. Rahimi, M. & Parvareh, A. (2007). CFD study on mixing by coupled jet-impeller mixers in a large crude oil storage tank. Compu. & Chem. Enginee. 31, 737–744.10.1016/j.compchemeng.2006.07.009
Language: English
Page range: 67 - 74
Published on: Apr 16, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Yang Liu, Jiawei Fan, Qinglin Cheng, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.